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Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ ∈ X to

f ∗ := min
x∈X

f (x) (CO)

such that f (x̃)− f ∗ < ε.

Here,

f is a real-valued, convex function

Rn is a high dimensional space

X ⊆ Rn closed, bounded, and convex
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Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ ∈ X to

f ∗ := min
x∈X

f (x) (CO)

such that f (x̃)− f ∗ < ε.

There are numerous additional properties that can be leveraged to more easily achieve
our task.

projection onto X is easy

differentiability of f

smoothness of f

Lipschitz continuity of f

strong convexity of f

For now, let us assume ∇f exists and is Lipschitz continuous with Lipschitz constant L,
i.e. f is L-smooth, and that a projection onto X is computationally feasible.
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Solving (CO)

Convex Optimization

Our problem of interest is computing an ε-solution x̃ ∈ X to

f ∗ := min
x∈X

f (x) (CO)

such that f (x̃)− f ∗ < ε.

How fast is fast and how do we measure this?

→ count the number of expensive operations

Example: Gradient Descent (GD)

xk = argmin
u∈X

∣∣∣∣∣∣∣∣u − (xk−1 −
1
ηk
∇f (xk−1)

)∣∣∣∣∣∣∣∣2
= argmin

u∈X
〈∇f (xk−1), u〉+

ηk
2
||u − xk−1||2

for properly chosen ηk , GD achieves an ε-solution in O(1/ε) iterations

only expensive operation is gradient evaluation, and GD uses 1 per iteration
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Solving (CO)

Algorithm 1 Nesterov’s accelerated gradient descent (NAGD)

Start: Choose x0 ∈ X . Set y0 := x0

for k = 1, . . . ,N do

zk =(1− γk)yk−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (zk), u〉+
ηk
2
‖u − xk−1‖2,

yk =(1− γk)yk−1 + γkxk .

end for
Output yN .

minimizes linear approximation proximal problem
subproblem is still a projection
reduces to gradient descent when γk ≡ 1
computes ε-solution in only O(1/

√
ε) iterations

requires knowledge of L to set ηk appropriately
is optimal for solving problems such as (CO) under first order oracle ([1])
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Solving (CO)

But what if the projection is not so easy?

certain sets can be as difficult to project to as the underlying problem is to solve
> X = conv(v1, . . . , vp)
> X = {Y ∈ Rn×n : tr(Y ) = 1,Y � 0}

NAGD is of no use when projection is more difficult than (CO)

want to design algorithms that do not require difficult optimizations over X , i.e.
projection free methods
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Projection Free Methods for Solving (CO)

Algorithm 2 Conditional Gradient (CG)

Start: Choose y0 ∈ X .
for k = 1, . . . ,N do

xk = argmin
x∈X

〈∇f (yk−1), x〉

yk = (1− αk)yk−1 + αkxk

end for
Output yN .

solves a linear optimization (LO) rather than a projection
> when X is convex hull, the LO is a linear program
> when X is standard spectrahedron, the LO is a smallest eigenvalue problem

requires O(1/ε) number of iterations to obtain ε-solution [2]

more gradient evaluations and the addition of linear optimizations, but no
projections at all

optimal number of linear optimizations
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Projection Free Methods for Solving (CO)

Question

Comparing CG to NAGD, we increase in the complexity of gradient evaluations necessary.
Is it possible to keep the gradient evaluations unchanged while being projection free?

The answer is yes! Simply solve xk subproblem with a projection free algorithm.
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Projection Free Methods for Solving (CO)

Algorithm 3 Conditional Gradient Sliding (CGS)

Start: Choose x0 ∈ X . Set y0 := x0

for k = 1, . . . ,N do

zk =(1− γk)yk−1 + γkxk−1,

xk =CG(∇f (xk), xk−1, ηk , εk)

yk =(1− γk)yk−1 + γkxk .

end for
Output yN .

solves xk subproblem approximately with linear optimizations only

if parameters are chosen properly, CGS computes ε-solution in O(1/
√
ε) gradient

evaluations and O(1/ε) linear optimizations [3]

requires L for setting of ηk
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Smoothness

A key feature of all the above algorithms is the assumption that the gradient of f is
Lipschitz with constant L, i.e,

f (x) ≤ f (u) + 〈∇f (u), x − u〉+
L

2
‖x − u‖2.

This combined with convexity can be leveraged to design efficient optimization methods.
However, we may not always have such luxury.

f (x) = λ ||x ||
f (x) = max

y∈∆m

〈x ,Ay〉
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Smoothness Relaxation

Relaxed Assumption - Hölder Smooth

Assume that there exists a Hölder exponent ν ∈ [0, 1] and constant Mν > 0 such that

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
Mν

1 + ν
||x − y ||1+ν , ∀x , y ∈ X .

This is a generalization of Lipschitz continuous gradient. In particular,

any convex smooth f with Lipschitz continuous gradient M1 is Hölder smooth with
ν = 1

any convex nonsmooth Lipschitz continuous f with is Hölder smooth with ν = 0

any convex smooth f satisfying

||∇f (y)−∇f (x)|| ≤ Mν ||y − x ||ν , ∀x , y ∈ X

is Hölder smooth with ν ∈ (0, 1)
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Solving (CO) with Sliding

Algorithm 4 Fast Gradient Method (FGM)

Start: Choose x0 ∈ X and ε > 0. Set y0 = x0

for k = 1, . . . ,N do
Decide Lk > 0 satisfying

f (yk) ≤ f (zk) + 〈∇f (zk), yk − zk〉+
Lk

2
||yk − zk ||2 +

ε

2
γk

where

zk =(1− γk)yk−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (zk), u〉+
ηk
2
‖u − xk−1‖2,

yk =(1− γk)yk−1 + γkxk .

end for
Output yN .

achieves ε-solution in O((1/ε)
2

1+3ν ) iterations
also optimal
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Comparison of Algorithms

We repeat the improvements

rather than minimizing f with FGM, we can apply CG to minimize using linear
optimizations instead of projections

CG for functions with Hölder continuous gradients requires O((1/ε)ν) iterations [4]

we can preserve the O((1/ε)
2

1+3ν ) gradient evaluations by approximately solving the
xk subproblem in FGM using CG
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Numerical Example

Algorithm 5 Universal Conditional Gradient Sliding (UCGS)

Start: Choose x0 ∈ X and ε > 0. Set y0 = x0
for k = 1, . . . ,N do

Decide Lk > 0 satisfying

f (yk ) ≤ f (zk ) + 〈∇f (zk ), yk − zk 〉+
Lk

2
||yk − zk ||2 +

ε

2
γk

where

zk =(1− γk )yk−1 + γkxk−1,

xk =ACG(∇f (zk ), xk−1, ηk , εk , δk )

yk =(1− γk )yk−1 + γkxk .

Terminate if
max
x∈X

f (yk )− `k (x) ≤ ε

where

`k (x) = Γk

k∑
i=1

γi

Γi
(f (zi ) + 〈∇f (zi , x − zi 〉)

end for
Output yN .
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Comparison of Algorithms

Properties of UCGS

contains a stopping condition

does not require knowledge of (ν,Mν) for setting of parameters

maintains the O((1/ε)
2

1+3ν ) gradient evaluations established in FGM for an
ε-solution

improves the number of linear optimizations required of CG to O((1/ε)
4

1+3ν )

allows linear optimization problems to be solved approximately

achievable by novel parameter choice
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Summary of Advantages

Advantages over FGM

removes need for projections

Advantages over Hölder CG

reduces gradient evaluations required

reduces linear optimizations required

provides support for ν = 0

Advantages over CGS

no longer requires knowledge of L in the smooth case

provides additional application for ν ∈ [0, 1)

allows usage of inexact linear optimization solvers

allows for possibility of early termination with exit criterion
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Numerical Experiments - Convex Hull

We consider the problem

min
x∈conv(V )

f (x) := ||Ax − b||2

with V = {v1, . . . , vp} ⊆ Rn, conv(V ) := {x ∈ Rn : ∃λ ∈ ∆p s.t. x =
∑p

j=1 λivi}, and
∆p := {λ ∈ Rp :

∑p
i=1 λi = 1, λi ≥ 0} is the standard simplex.

UCGS CG
n d GE LO Time Error Iter Time Error

2500 0.2 66 2690 6.71 9.945e − 4 572 13.42 9.7086e1
2500 0.4 60 3679 9.08 9.976e − 4 524 18.17 1.404e2
2500 0.6 62 245 2.64 9.678e − 4 146 5.29 5.598e2
2500 0.8 57 3176 8.45 9.768e − 4 399 16.93 2.400e2
5000 0.2 71 286 7.13 9.882e − 4 178 14.32 6.037e2
5000 0.4 42 52 4.89 9.585e − 4 84 9.81 1.689e3
5000 0.6 68 4564 36.14 9.727e − 4 483 72.40 3.527e2
5000 0.8 67 419 12.91 9.815e − 4 161 25.94 1.165e3
10000 0.2 85 12269 150.51 9.96e − 4 915 301.21 2.449e2
10000 0.4 69 12614 157.39 9.916e − 4 636 315.27 4.734e2
10000 0.6 70 16063 205.87 9.821e − 4 653 412.14 5.423e2
10000 0.8 69 12707 180.65 9.862e − 4 473 361.73 8.162e2
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Numerical Experiments - Spectrahedron

For our second experiment, we solve the problem

min
X∈Spen

f (X ) :=
m∑
i=1

||X − Ai ||2

where Spen := {X ∈ Rn×n : tr(X ) = 1,X � 0} and Ai ∈ Spen for each i = 1, . . . ,m.

UCGS CG
n m GE LO Time Error Iter Time Error
50 50 1354 8493 9.87 9.992e − 4 6908 19.74 6.073e − 3
50 100 1767 11138 13.09 9.994e − 4 7038 26.19 1.172e − 2
50 200 2425 15173 25.39 9.995e − 4 8273 50.79 2.271e − 2
100 50 1836 13056 159.61 9.980e − 4 11648 319.25 3.225e − 3
100 100 2347 16816 216.59 9.990e − 4 13372 433.20 5.634e − 3
100 200 3296 23836 310.16 9.984e − 4 16053 620.36 9.892e − 3
200 50 1722 33673 470.71 9.989e − 4 15966 941.43 3.308e − 3
200 100 2314 46323 730.69 9.994e − 4 17033 1461.42 6.870e − 3
200 200 3154 64511 1086.42 9.992e − 4 19762 2172.85 1.015e − 2
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50 200 2425 15173 25.39 9.995e − 4 8273 50.79 2.271e − 2
100 50 1836 13056 159.61 9.980e − 4 11648 319.25 3.225e − 3
100 100 2347 16816 216.59 9.990e − 4 13372 433.20 5.634e − 3
100 200 3296 23836 310.16 9.984e − 4 16053 620.36 9.892e − 3
200 50 1722 33673 470.71 9.989e − 4 15966 941.43 3.308e − 3
200 100 2314 46323 730.69 9.994e − 4 17033 1461.42 6.870e − 3
200 200 3154 64511 1086.42 9.992e − 4 19762 2172.85 1.015e − 2
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