Worst Case Datasets for Solving Binary Logistic Regression via Deterministic First-Order Methods

Trevor Squires¹

Thesis Defense, July 21, 2021

¹Supported by the National Science Foundation through grant DMS-1913006.

Binary Logistic Regression (BLR)

Binomial Logistic Regression

Binary Logistic Regression

$$\min_{x \in \mathbb{R}^{n}, y \in \mathbb{R}} \sum_{i=1}^{N} 2 \log \left(1 + \exp \left(-b_{(i)} (a_{i}^{T} x + y) \right) \right)$$

- a_i^T represent rows of data matrix $A \in \mathbb{R}^{N \times n}$
- $b_{(i)}$ are the entries of the response vector $b \in \{-1,1\}^N$
- Assumes $P(b_{(i)} = 1 \mid a_i^T; x, y) = \frac{1}{1 + \exp(-a_i^T x + y)}$
- Model formulated by maximum likelihood estimation
- n >> 1

Can we work with something cleaner? Define

$$\begin{split} h(u) &\equiv h_k(u) := \sum_{i=1}^k 2\log\left(2\cosh\left(\frac{u_{(i)}}{2}\right)\right) \\ &= \sum_{i=1}^k 2\log\left(\exp\left(\frac{u_{(i)}}{2}\right) + \exp\left(-\frac{u_{(i)}}{2}\right)\right). \end{split}$$

for any $u \in \mathbb{R}^k$.

$$\phi_{A,b}^* := \min_{x \in \mathbb{R}^n, y \in \mathbb{R}} \phi_{A,b}(x,y) := h(Ax + y1) - b^T(Ax + y1)$$

Our goal: compute an ε -solution (\hat{x}, \hat{y}) such that $\phi_{A,b}(\hat{x}, \hat{y}) - \phi^*_{A,b} < \varepsilon$ as quickly as possible.

Compute an ε -solution to

$$\phi_{A,b}^* := \min_{x \in \mathbb{R}^n, y \in \mathbb{R}} \phi_{A,b}(x,y) := h(Ax + y1) - b^T(Ax + y1)$$

as quickly as possible.

- $\phi_{A,b}(x, y)$ has the following properties:

 - $\phi_{A,b}(x, y)$ is convex $\nabla \phi_{A,b}(x, y)$ is Lipschitz continuous
- Solving for $\phi^*_{A,b}$ is smooth, convex, and unconstrained optimization
- Can relax to just solving smooth, convex problems

Smooth Convex Optimization

Compute an ε -solution to

$$f^* := \min_{x \in \mathbb{R}^n} f(x)$$

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous gradient, i.e. $||\nabla f(x) - \nabla f(y)|| \le L ||x - y||, \forall x, y \in \mathbb{R}^n$.

- Large class of problems
- Examples include
 - Regularized Linear Least Squares

$$f(x) = \frac{1}{2} ||Ax - b||^2 + \lambda ||x||^2$$

- Quadratic Programming

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x, A \succeq 0$$

- What is a first order method?
 - any method \mathcal{M} such that \mathcal{M} accesses the first order information of f through a deterministic oracle $\mathcal{O}_f : \mathbb{R}^n \to \mathbb{R}^n \times \mathbb{R}^n$ with $\mathcal{O}_f(x) = (f(x), \nabla f(x))$ for $x \in \mathbb{R}^n$

Algorithm 1 Nesterov's accelerated gradient descent (NAGD)

Select parameters $\gamma_k \in (0, 1]^N$, η_k . Choose $x_0 \in \mathbb{R}^n$. Set $y_0 = x_0$. for k = 1, ..., N do

$$z_k = (1 - \gamma_k)y_{k-1} + \gamma_k x_{k-1}$$
$$x_k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \langle \nabla f(z_k), x \rangle + \frac{\eta_k}{2} ||x_{k-1} - x||_2^2$$
$$y_k = (1 - \gamma_k)y_{k-1} + \gamma_k x_k$$

end for Output y_N .

- output y_N.
- Depends on parameters γ_k, η_k .
- Different parameter settings = different performance

Compute an ε -solution to

$$f^* := \min_{x \in \mathbb{R}^n} f(x)$$

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous gradient, i.e. $||\nabla f(x) - \nabla f(y)|| \le L ||x - y||, \forall x, y \in \mathbb{R}^n$.

If we set $\gamma_k \equiv 1$ and $\eta_k \equiv L$ in NAGD, then

•
$$x_k = (x_{k-1} - \frac{1}{L}\nabla f(x_{k-1}))$$

• NAGD reduces to gradient descent (GD)

•
$$f(\tilde{y}_N) - f(x^*) \leq \frac{L ||x^* - x_0||^2}{N+1}$$
 where $\tilde{y}_N = \sum_{k=0}^N y_k / (N+1)$

• Computes an ε -solution in $\mathcal{O}(1/\varepsilon)$ iterations

GD provides an upper complexity bound of $\mathcal{O}(1/\varepsilon)$ for smooth convex optimization. Is this "as quickly as possible?"

Compute an ε -solution to

$$f^* := \min_{x \in \mathbb{R}^n} f(x)$$

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous gradient, i.e. $||\nabla f(x) - \nabla f(y)|| \le L ||x - y||, \forall x, y \in \mathbb{R}^n$.

If we set
$$\gamma_k = \frac{2}{k+1}$$
 and $\eta_k = \frac{2L}{k}$ in NAGD, then

•
$$f(y_N) - f(x^*) \le \frac{4L}{N(N+1)} ||x^* - x_0||^2$$

- Computes an arepsilon-solution in $\mathcal{O}(1/\sqrt{arepsilon})$ iterations
- Asymptotically better than gradient descent
- Called Optimal Gradient Descent (OGD)

OGD provides an upper complexity bound of $\mathcal{O}(1/\sqrt{\varepsilon})$ for smooth convex optimization. Is this "as quickly as possible?"

Compute an ε -solution to

$$f^* := \min_{x \in \mathbb{R}^n} f(x)$$

as quickly as possible.

- What does "as quickly as possible" mean?
- How can we evaluate the worst-case performance of an algorithm?
- Search for some "difficult" problem instance such that said algorithm struggles to solve it.
- A worst case problem instance for a class of algorithms provides a lower complexity bound.

Complexity Bounds

Compute an ε -solution to

$$f^* := \min_{x \in \mathbb{R}^n} f(x)$$

as quickly as possible.

- Why exactly do we consider iterative first order method?
- Consider a simple problem class: quadratic programming

$$\min_{\mathbf{x}\in\mathbb{R}^n}\frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x}, A \succeq \mathbf{0}$$

- second order methods (Newton's) require 1 iteration of $\mathcal{O}(n^3)$ (requires linear system solve) flops
- first order methods require t iterations of $\mathcal{O}(n^2)$ flops
- If $t \leq n$, i.e. when n is large, first order seems best

Compute an ε -solution to

$$f^* := \min_{x \in \mathbb{R}^n} f(x)$$

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous gradient, i.e. $||\nabla f(x) - \nabla f(y)|| \le L ||x - y||, \forall x, y \in \mathbb{R}^n$.

Let's review

- Binary logistic regression is in the class of smooth convex optimization problems
- Optimal gradient descent solves smooth convex optimization problems in $\mathcal{O}(1/\sqrt{\varepsilon})$ iterations
- We hope to find a problem instance such that no first order method can solve it faster than $\mathcal{O}(1/\sqrt{\varepsilon})$

Lower Complexity Bound Goal

In [1], Nemirovski showed that the lower complexity bound of solving

$$f^* := \min_{x \in \mathbb{R}^n} f(x) := Q_{A,b}(x) := \frac{1}{2} x^T A x - b^T x$$

via first order deterministic methods was $\mathcal{O}(1/\sqrt{\varepsilon})$, i.e. OGD is indeed optimal. Key ideas from Nemirovski:

- Construct a worst-case instance of f such that any first order method \mathcal{M} struggles to solve it.
- Find an "equivalent" function g such that all iterates x_t generated by \mathcal{M} applied to g lie in a particular subspace.
- Show that the error at step t of \mathcal{M} applied to g is at least as large as the proposed lower complexity bound.

Key Idea

Construct a worst-case instance of f such that any first order method \mathcal{M} struggles to solve it.

•
$$A_{4k+3} = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}$$

• $A = \frac{l}{4} \begin{pmatrix} A_{4k+3} & 0 \\ 0 & 0 \end{pmatrix} \in \mathbb{R}^{n \times n}, b = \frac{l}{4}e_1$
• $\min_{x \in \mathcal{K}_{2k+1}(A,b)} Q_{A,b}(x) - \min_{x \in \mathbb{R}^n} Q_{A,b}(x) \ge \frac{3L||x^*||^2}{128(k+1)^2}$
• Here, $\mathcal{K}_r(A, b) = \operatorname{span}\{b, Ab, \dots, A^{r-1}b\}$
If each iterate $x_t \in \mathcal{K}_{2k+1}(A, b)$, we are done!

Key Idea

Find an "equivalent" function g such that all iterates x_t generated by \mathcal{M} applied to g lie in a particular subspace.

- If $x_t \notin \mathcal{K}_{2k+1}(A, b)$, we can rotate the problem, i.e. find g(x) := f(Ux), such that - $x_t \in U^T \mathcal{K}_{2k+1}(A, b)$ for some orthogonal matrix U satisfying Ub = b
 - $-\min_{x \in U^{T} \mathcal{K}_{r}(A,b)} Q_{U^{T}AU,b}(x) \min_{x \in \mathbb{R}^{n}} Q_{U^{T}AU,b}(x) = \min_{x \in \mathcal{K}_{r}(A,b)} Q_{A,b}(x) \min_{x \in \mathbb{R}^{n}} Q_{A,b}(x)$
- If g and f have the same first order information at the oracle query points, then \mathcal{M} "cannot differentiate" between the two
- Utilizes an important lemma

Lemma

Let X and Y be two linear subspaces satisfying $X \subsetneq Y \subseteq \mathbb{R}^{p}$. Then for any $y \in \mathbb{R}^{p}$, there exists orthogonal matrix V such that

$$Vy \in Y$$
 and $Vx = x, \ \forall x \in X$

Key Idea

Show that the error at step t of \mathcal{M} applied to the rotated objective function is at least as large as the proposed lower complexity bound.

Theorem

For any first order iterative method \mathcal{M} and iterate $k \leq \frac{n-3}{4}$, there exists some smooth convex function $g : \mathbb{R}^n \to \mathbb{R}$ with L-Lipschitz gradient such that x_k generated by \mathcal{M} satisfies

$$g(x_k) - \min_{x \in \mathbb{R}^n} g(x) \geq rac{3L \, ||x_0 - x^*||^2}{128(k+1)^2}$$

We conclude OGD is optimal for smooth convex optimization

Nemirovski:

- Constructed A by characterizing its spectrum
 - WLOG may assume A is diagonal since for $A = V^T \Lambda V$,

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x - b^T x = \min_{x \in \mathbb{R}^n} \frac{1}{2} x^T V^T \Lambda V x - b^T V^T V x = \min_{y \in \mathbb{R}^n} \frac{1}{2} y^T \Lambda y - b^* y$$

- Enforced iterates in Krylov subspace using rotation/orthogonal invariance trick
- Pros: Rigorous, general
- Cons: Hard to follow, diagonalization may not hold in other setting Nesterov:
 - Constructed A using tridiagonal form
 - Enforce iterates in Krylov subspace using linear span assumption (shown in [2])
 - Pros: Easy to follow
 - Cons: Requires assumption

- There exists the following other available lower complexity bound results on deterministic first order methods for convex optimization $f^* := \min f(x)$.
 - when f is convex, the lower complexity bound is $\mathcal{O}(1/\varepsilon^2)$ [1, 2]
 - when f is convex, nonsmooth with bilinear saddle point structure, the lower complexity bound is $O(1/\varepsilon)$ [3]
 - when f is strongly convex, smooth the lower complexity bound is $\mathcal{O}(\log(1/\varepsilon))$ [2, 4]
- What about binary logistic regression?
 - can we do better than smooth convex optimization?
 - can we adapt Nemirovski/Nesterov's idea to binary logistic regression?

Lower Complexity Bound Summary

- Extend this result to binary logistic regression problems
- Construct a worst-case dataset for solving binary logistic regression that requires $\mathcal{O}(1/\sqrt{\varepsilon})$ first order oracle calls
- These worst-case constructions will satisfy $y^* = 0$. Consequently, it suffices to solve the logistic model with homogeneous linear predictor

$$I_{A,b}(x) = h(Ax) - b^T Ax$$

and corresponding problem

$$I_{A,b}^* = \min_{x \in \mathbb{R}^n} I_{A,b}(x).$$

• We assume that

- (initially) the iterates of a deterministic first order method \mathcal{M} satisfy $x_t \in \text{span}\{\nabla f(x_0), \dots, \nabla f(x_{t-1})\}$
- $-x_0 = 0$
- $-x_t$'s are inquiry points and approximate solutions

Binary Logistic Regression

$$I_{A,b}^* := \min_{x \in \mathbb{R}^n} I_{A,b}(x) := h(Ax) - b^T Ax$$

• Given any k, let
$$W_k := \begin{pmatrix} -1 & 1 \\ -1 & 1 \\ \vdots & \ddots & \vdots \\ -1 & 1 \\ 1 \end{pmatrix} \in \mathbb{R}^{k \times k}, A_k := \begin{pmatrix} 2\sigma W_k \\ -2\zeta W_k \\ 2\zeta W_k \end{pmatrix} \in \mathbb{R}^{4k \times k}, b_k = \begin{pmatrix} 1_{2k} \\ -1_{2k} \end{pmatrix} \in \mathbb{R}^{4k} \text{ and } \sigma > \zeta > 0.$$

• Define $f_k(x) := h(A_k x) - b_k^T(A_k x)$ and $\phi_k(x, y) := h(A_k x + y 1_k) - b_k^T(A_k x + y 1_k)$
• $x^* = \underset{x \in \mathbb{R}^k}{\operatorname{argmin}} f_k = c(1, 2, \dots, k)^T$
• $f_k^* = f_k(x^*) = 8k \log 2 + 4k (\log \cosh(\sigma c) + \log \cosh(\zeta c) - (\sigma - \zeta)c)$

Properties of W_k and A_k

Objective Functions

$$W_k := \begin{pmatrix} & -1 & 1 \\ & -1 & 1 \\ & \ddots & \ddots \\ -1 & 1 & \\ 1 & & & \end{pmatrix}, A_k := \begin{pmatrix} 2\sigma W_k \\ -2\zeta W_k \\ -2\sigma W_k \\ 2\zeta W_k \end{pmatrix}, b_k = \begin{pmatrix} \mathbf{1}_{2k} \\ -\mathbf{1}_{2k} \end{pmatrix}$$

• Define for any positive integers t and k

$$\mathcal{X}_{t,k} := \mathsf{span}\{e_{k-t+1,k}, \dots, e_{k,k}\}, \, \forall k, \, 1 \le t \le k$$

and

$$\mathcal{Y}_{t,k} := \mathsf{span}\{e_{1,4k}, \dots, e_{t,4k}, e_{k+1,4k}, \dots, e_{k+t,4k}, \dots, e_{3k+1,4k}, \dots, e_{3k+t,4k}\}.$$

•
$$W_k 1_k = e_{k,k}, A_k^T b_k \in \mathcal{X}_{k,k}$$

• For $x = \begin{pmatrix} 0_{k-t} \\ u \end{pmatrix} \in \mathcal{X}_{t,k}, W_k x = \begin{pmatrix} W_t u \\ 0_{k-t} \end{pmatrix}$, and $A_k x, \nabla h(A_k x) \in \mathcal{Y}_{t,k}$
• For $y = \begin{pmatrix} v \\ 0_{k-t} \end{pmatrix} \in \mathcal{X}_{k-t,k}^C, W_k^T v = \begin{pmatrix} 0_{k-t-1} \\ -v_{(t)} \\ W_t v \end{pmatrix} \in \mathcal{X}_{t+1,k}$
• $A_k^T \nabla h(A_k x) = 4\sigma W_k^T \begin{pmatrix} \tanh(\sigma W_t u) \\ 0_{k-t} \end{pmatrix} + 4\zeta W_k^T \begin{pmatrix} \tanh(\zeta W_t u) \\ 0_{k-t} \end{pmatrix} \in \mathcal{X}_{t+1,k}$

Trevor Squires

Linear Span Assumption

When \mathcal{M} is applied to solve f_k , the iterates x_t generated by \mathcal{M} satisfy

 $x_t \in \operatorname{span}\{\nabla f_k(x_0), \ldots, \nabla f_k(x_{t-1})\}$

- Recall: $A_k^T b_k \in \mathcal{X}_{k,k}$
- Recall: $A_k^T \nabla h(A_k x) \in \mathcal{X}_{t+1,k}$

•
$$\nabla f_k(x_t) = A_k^T \nabla h(A_k x) - A_k^T b_k \in \mathcal{X}_{t+1,k}$$

- The linear span assumption gives $x_t \in \mathcal{X}_{t,k}$ "for free"
- Can compute $\min_{x \in X_{t,k}} f_k(x) f_k^* = 8(k-t) \log 2 + f_t^* f_k^*$

Objective Function

$$l_{A,b}^* := \min_{x \in \mathbb{R}^n} l_{A,b}(x) := \min_{x \in \mathbb{R}^n} h(Ax) - b^T Ax$$

Theorem

Let \mathcal{M} be a deterministic first order method applied to solve binary logistic regression whose iterates satisfy the linear span assumption. For any iteration count \mathcal{M} and constants n = 2T, N = 8T, there exist data matrix $A \in \mathbb{R}^{N \times n}$, response vector $b \in \{-1,1\}^N$, and corresponding objective function $I_{A,b}$ such that the T-th iterate generated by \mathcal{M} satisfies

$$l_{A,b}(x_{T}) - l_{A,b}(x^{*}) \geq \frac{3 ||A||^{2} ||x_{0} - x^{*}||^{2}}{32(2T+1)(4T+1)}$$

and

$$||x_{T} - x^{*}||^{2} > \frac{1}{8} ||x_{0} - x^{*}||^{2}.$$

Key ideas from Nemirovski:

- Construct a worst-case instance of f such that any first order method \mathcal{M} struggles to solve it. Done via A_k, W_k , and b_k similar to Nesterov
- Find an "equivalent" function g such that it shares the first order information of f and all iterates x_t generated by \mathcal{M} applied to g lie in a particular subspace. Done using f_k via linear span assumption
- Show that the error at step t of \mathcal{M} applied to g is at least as large as the proposed lower complexity bound. Done in the same way as Nemirovski

Do we need the linear span assumption, i.e. can we find a related function g similar to Nemirovski?

Lemma

For A_k , b_k specified previously, any first order method \mathcal{M} , and some $t \leq \frac{k-3}{2}$, there exists an orthogonal matrix $U_t \in \mathbb{R}^{k \times k}$ satisfying

- $U_t A_k^T b_k = A_k^T b_k$
- When M is applied to solve $I_{A_k U_t, b_k}$, the iterates x_0, \ldots, x_t satisfy

$$x_i \in U_t^T \mathcal{X}_{2i+1,k}, i = 0, \ldots, t.$$

- Idea: use successive instances of the rotation lemma to find matrices that fix all previous iterates **and** places the next iterate in a larger subspace
- Show that a first order algorithm "can not tell a difference" of the original problem and the rotated problem, i.e. they have the same first order information

Objective Function

$$I_{A,b}^* := \min_{x \in \mathbb{R}^n} I_{A,b}(x) := \min_{x \in \mathbb{R}^n} h(Ax) - b^T Ax$$

Theorem

(Presented in [5]) For any first order method \mathcal{M} and fixed iteration number T with corresponding constants N = 10T + 8, n = 4T + 2, there always exists data matrix $A \in \mathbb{R}^{N \times n}$ and response vector $b \in \mathbb{R}^N$ such that when \mathcal{M} is applied to solve $I_{A,b}$, the T-th iterate satisfies

$$I_{A,b}(x_T) - I_{A,b}^* \ge \frac{3 ||A||^2 ||x_0 - x^*||^2}{16(4T+3)(8T+5)}$$

and

$$||x_{T} - x^{*}||^{2} > \frac{1}{8} ||x_{0} - x^{*}||^{2}.$$

Lower Complexity Bound Summary

Concluding Remarks

- Conditions
 - First order oracle assumption
 - Large dimensionality assumption
- Unconstrained quadratic optimization of the form

$$\min_{x\in\mathbb{R}^n}\frac{1}{2}x^TAx - b^Tx$$

has a lower bound complexity of $\mathcal{O}(1/\sqrt{arepsilon})$

- OGD is optimal for smooth convex optimization
- CG is optimal for unconstrained quadratic optimization
- (Homogeneous) Binary logistic regression of the form

$$\min_{x\in\mathbb{R}^n}h(Ax)-b^T(Ax)$$

has a lower bound complexity of $\mathcal{O}(1/\sqrt{arepsilon})$

- OGD is optimal for homogeneous binary logistic regression
- OGD is optimal for inhomogeneous binary logistic regression

References

A. Nemirovski and D. Yudin.

Problem complexity and method efficiency in optimization. Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.

Y. E. Nesterov.

Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Massachusetts, 2004.

Yuyuan Ouyang and Yangyang Xu.

Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems.

Mathematical Programming, pages 1–35, 2019.

Blake Woodworth, Jialei Wang, Brendan McMahan, and Nathan Srebro. Graph oracle models, lower bounds, and gaps for parallel stochastic optimization. *arXiv preprint arXiv:1805.10222*, 2018.

Yuyuan Ouyang and Trevor Squires.

Some worst-case datasets of deterministic first-order methods for solving binary logistic regression.

Inverse Problems and Imaging, 2019.