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Binary Logistic Regression (BLR)

Binomial Logistic Regression
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Introduction

Binary Logistic Regression

min
x∈Rn,y∈R

N∑
i=1

2 log
(
1+ exp

(
−b(i)(a

T
i x + y)

))
aTi represent rows of data matrix A ∈ RN×n

b(i) are the entries of the response vector b ∈ {−1, 1}N

Assumes P(b(i) = 1 | aTi ; x , y) = 1
1+exp(−aTi x+y)

Model formulated by maximum likelihood estimation

n >> 1
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Introduction

Can we work with something cleaner? Define

h(u) ≡ hk(u) :=
k∑

i=1

2 log
(
2 cosh

(u(i)

2

))
=

k∑
i=1

2 log
(
exp

(u(i)

2

)
+ exp

(
−
u(i)

2

))
.

for any u ∈ Rk .

φ∗A,b := min
x∈Rn,y∈R

φA,b(x , y) := h(Ax + y1)− bT (Ax + y1)

Our goal: compute an ε-solution (x̂ , ŷ) such that φA,b(x̂ , ŷ)− φ∗A,b < ε as quickly as
possible.
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Introduction

Goal

Compute an ε-solution to

φ∗A,b := min
x∈Rn,y∈R

φA,b(x , y) := h(Ax + y1)− bT (Ax + y1)

as quickly as possible.

φA,b(x , y) has the following properties:
– φA,b(x , y) is convex
– ∇φA,b(x , y) is Lipschitz continuous

Solving for φ∗A,b is smooth, convex, and unconstrained optimization

Can relax to just solving smooth, convex problems
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Smooth Convex Optimization

Smooth Convex

BLR
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Smooth Convex Optimization

Goal

Compute an ε-solution to
f ∗ := min

x∈Rn
f (x)

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||∇f (x)−∇f (y)|| ≤ L ||x − y || ,∀x , y ∈ Rn.

Large class of problems
Examples include

– Regularized Linear Least Squares

f (x) =
1
2
||Ax − b||2 + λ ||x ||2

– Quadratic Programming

f (x) =
1
2
xTAx − bT x ,A � 0

What is a first order method?
– any methodM such thatM accesses the first order information of f through a

deterministic oracle Of : Rn → Rn × Rn with Of (x) = (f (x),∇f (x)) for x ∈ Rn
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Smooth Convex Optimization

Algorithm 1 Nesterov’s accelerated gradient descent (NAGD)

Select parameters γk ∈ (0, 1]N , ηk . Choose x0 ∈ Rn. Set y0 = x0.
for k = 1, . . . ,N do

zk =(1− γk)yk−1 + γkxk−1

xk =argmin
x∈Rn

〈∇f (zk), x〉+
ηk
2
||xk−1 − x ||22

yk =(1− γk)yk−1 + γkxk

end for
Output yN .

Depends on parameters γk , ηk .

Different parameter settings = different performance
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Smooth Convex Optimization

Goal

Compute an ε-solution to
f ∗ := min

x∈Rn
f (x)

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||∇f (x)−∇f (y)|| ≤ L ||x − y || ,∀x , y ∈ Rn.

If we set γk ≡ 1 and ηk ≡ L in NAGD, then

xk = (xk−1 − 1
L
∇f (xk−1))

NAGD reduces to gradient descent (GD)

f (ỹN)− f (x∗) ≤ L||x∗−x0||2
N+1 where ỹN =

∑N
k=0 yk/(N + 1)

Computes an ε-solution in O(1/ε) iterations
GD provides an upper complexity bound of O(1/ε) for smooth convex optimization. Is
this "as quickly as possible?"
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Smooth Convex Optimization

Goal

Compute an ε-solution to
f ∗ := min

x∈Rn
f (x)

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||∇f (x)−∇f (y)|| ≤ L ||x − y || ,∀x , y ∈ Rn.

If we set γk = 2
k+1 and ηk = 2L

k
in NAGD, then

f (yN)− f (x∗) ≤ 4L
N(N+1)

||x∗ − x0||2

Computes an ε-solution in O(1/
√
ε) iterations

Asymptotically better than gradient descent

Called Optimal Gradient Descent (OGD)

OGD provides an upper complexity bound of O(1/
√
ε) for smooth convex optimization.

Is this "as quickly as possible?"
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Lower Complexity Bound

Goal

Compute an ε-solution to
f ∗ := min

x∈Rn
f (x)

as quickly as possible.

What does "as quickly as possible" mean?

How can we evaluate the worst-case performance of an algorithm?

Search for some "difficult" problem instance such that said algorithm struggles to
solve it.

A worst case problem instance for a class of algorithms provides a lower complexity
bound.
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Complexity Bounds

up
pe
r
co
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ex
ity

bo
un

d
low

er
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plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (OGD)

O(log 1/ε)?

O(1/
√
ε)?
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Algorithm Class Comparison

Goal

Compute an ε-solution to
f ∗ := min

x∈Rn
f (x)

as quickly as possible.

Why exactly do we consider iterative first order method?

Consider a simple problem class: quadratic programming

min
x∈Rn

1
2
xTAx − bT x ,A � 0

– second order methods (Newton’s) require 1 iteration of O(n3) (requires linear system
solve) flops

– first order methods require t iterations of O(n2) flops
– If t ≤ n, i.e. when n is large, first order seems best
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Smooth Convex Optimization

Goal

Compute an ε-solution to
f ∗ := min

x∈Rn
f (x)

as quickly as possible. Here, f is convex differentiable and has L-Lipschitz continuous
gradient, i.e. ||∇f (x)−∇f (y)|| ≤ L ||x − y || ,∀x , y ∈ Rn.

Let’s review

Binary logistic regression is in the class of smooth convex optimization problems

Optimal gradient descent solves smooth convex optimization problems in O(1/
√
ε)

iterations

We hope to find a problem instance such that no first order method can solve it
faster than O(1/

√
ε)
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Lower Complexity Bound Goal

Smooth Convex

Difficult Problems

O(1/
√
ε)?

O(1/
√
ε)
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Complexity Bounds

In [1], Nemirovski showed that the lower complexity bound of solving

f ∗ := min
x∈Rn

f (x) := QA,b(x) :=
1
2
xTAx − bT x

via first order deterministic methods was O(1/
√
ε), i.e. OGD is indeed optimal.

Key ideas from Nemirovski:

Construct a worst-case instance of f such that any first order methodM struggles
to solve it.

Find an "equivalent" function g such that all iterates xt generated byM applied to
g lie in a particular subspace.

Show that the error at step t ofM applied to g is at least as large as the proposed
lower complexity bound.
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Nemivroski+Nesterov Proof Sketch

Key Idea

Construct a worst-case instance of f such that any first order methodM struggles to
solve it.

A4k+3 =


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


A = L

4

(
A4k+3 0
0 0

)
∈ Rn×n, b = L

4e1

min
x∈K2k+1(A,b)

QA,b(x)− min
x∈Rn

QA,b(x) ≥
3L||x∗||2
128(k+1)2

Here, Kr (A, b) = span{b,Ab, . . . ,Ar−1b}
If each iterate xt ∈ K2k+1(A, b), we are done!
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Nemirovski+Nesterov Proof Sketch

Key Idea

Find an "equivalent" function g such that all iterates xt generated byM applied to g lie
in a particular subspace.

If xt 6∈ K2k+1(A, b), we can rotate the problem, i.e. find g(x) := f (Ux), such that
– xt ∈ UTK2k+1(A, b) for some orthogonal matrix U satisfying Ub = b
– min

x∈UTKr (A,b)
QUTAU,b(x)− min

x∈Rn
QUTAU,b(x) = min

x∈Kr (A,b)
QA,b(x)− min

x∈Rn
QA,b(x)

If g and f have the same first order information at the oracle query points, thenM
"cannot differentiate" between the two

Utilizes an important lemma

Lemma

Let X and Y be two linear subspaces satisfying X ( Y ⊆ Rp. Then for any y ∈ Rp,
there exists orthogonal matrix V such that

Vy ∈ Y and Vx = x , ∀x ∈ X
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Nemirovski+Nesterov Proof Sketch

Key Idea

Show that the error at step t ofM applied to the rotated objective function is at least as
large as the proposed lower complexity bound.

Theorem

For any first order iterative methodM and iterate k ≤ n−3
4 , there exists some smooth

convex function g : Rn → R with L-Lipschitz gradient such that xk generated byM
satisfies

g(xk)− min
x∈Rn

g(x) ≥ 3L ||x0 − x∗||2

128(k + 1)2
.

We conclude OGD is optimal for smooth convex optimization
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Nemirovski vs. Nesterov Technique

Nemirovski:
Constructed A by characterizing its spectrum

– WLOG may assume A is diagonal since for A = VT ΛV ,

min
x∈Rn

1
2
xTAx − bT x = min

x∈Rn

1
2
xTVT ΛVx − bTVTVx = min

y∈Rn

1
2
yT Λy − b∗y

Enforced iterates in Krylov subspace using rotation/orthogonal invariance trick

Pros: Rigorous, general

Cons: Hard to follow, diagonalization may not hold in other setting

Nesterov:

Constructed A using tridiagonal form

Enforce iterates in Krylov subspace using linear span assumption (shown in [2])

Pros: Easy to follow

Cons: Requires assumption
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Lower Complexity Extensions

There exists the following other available lower complexity bound results on
deterministic first order methods for convex optimization f ∗ := min

x
f (x).

– when f is convex, the lower complexity bound is O(1/ε2) [1, 2]
– when f is convex, nonsmooth with bilinear saddle point structure, the lower complexity

bound is O(1/ε) [3]
– when f is strongly convex, smooth the lower complexity bound is O(log(1/ε)) [2, 4]

What about binary logistic regression?
– can we do better than smooth convex optimization?
– can we adapt Nemirovski/Nesterov’s idea to binary logistic regression?
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Lower Complexity Bound Summary

Smooth Convex

BLR

QP

O(1/
√
ε)

?
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BLR Lower Complexity Bound

Extend this result to binary logistic regression problems

Construct a worst-case dataset for solving binary logistic regression that requires
O(1/

√
ε) first order oracle calls

These worst-case constructions will satisfy y∗ = 0. Consequently, it suffices to solve
the logistic model with homogeneous linear predictor

lA,b(x) = h(Ax)− bTAx

and corresponding problem
l∗A,b = min

x∈Rn
lA,b(x).

We assume that
– (initially) the iterates of a deterministic first order methodM satisfy

xt ∈ span{∇f (x0), . . . ,∇f (xt−1)}
– x0 = 0
– xt ’s are inquiry points and approximate solutions
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BLR Lower Complexity Bound

Binary Logistic Regression

l∗A,b := min
x∈Rn

lA,b(x) := h(Ax)− bTAx

Given any k, let Wk :=


−1 1

−1 1

. .
.

. .
.

−1 1
1

 ∈ Rk×k ,Ak :=


2σWk

−2ζWk

−2σWk

2ζWk

 ∈

R4k×k , bk =

(
12k

−12k

)
∈ R4k and σ > ζ > 0.

Define fk(x) := h(Akx)− bT
k (Akx) and φk(x , y) := h(Akx+y1k)− bT

k (Akx + y1k)

x∗ = argmin
x∈Rk

fk = c(1, 2, . . . , k)T

f ∗k = fk(x
∗) = 8k log 2+ 4k (log cosh(σc) + log cosh(ζc)− (σ − ζ)c)
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Properties of Wk and Ak

Objective Functions

Wk :=


−1 1

−1 1

. .
.

. .
.

−1 1
1

 , Ak :=


2σWk
−2ζWk
−2σWk
2ζWk

 , bk =

(
12k
−12k

)

Define for any positive integers t and k

Xt,k := span{ek−t+1,k , . . . , ek,k}, ∀k, 1 ≤ t ≤ k

and

Yt,k := span{e1,4k , . . . , et,4k , ek+1,4k , . . . , ek+t,4k , . . . , e3k+1,4k , . . . , e3k+t,4k}.

Wk1k = ek,k ,A
T
k bk ∈ Xk,k

For x =

(
0k−t

u

)
∈ Xt,k , Wkx =

(
Wtu
0k−t

)
, and Akx ,∇h(Akx) ∈ Yt,k

For y =

(
v

0k−t

)
∈ X C

k−t,k , W
T
k v =

0k−t−1

−v(t)

Wtv

 ∈ Xt+1,k

AT
k ∇h(Akx) = 4σW T

k

(
tanh(σWtu)

0k−t

)
+ 4ζW T

k

(
tanh(ζWtu)

0k−t

)
∈ Xt+1,k
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Properties of Wk and Ak

Linear Span Assumption

WhenM is applied to solve fk , the iterates xt generated byM satisfy

xt ∈ span{∇fk(x0), . . . ,∇fk(xt−1)}

Recall: AT
k bk ∈ Xk,k

Recall: AT
k ∇h(Akx) ∈ Xt+1,k

∇fk(xt) = AT
k ∇h(Akx)− AT

k bk ∈ Xt+1,k

The linear span assumption gives xt ∈ Xt,k "for free"

Can compute min
x∈Xt,k

fk(x)− f ∗k = 8(k − t) log 2+ f ∗t − f ∗k
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BLR Lower Complexity Bound

Objective Function

l∗A,b := min
x∈Rn

lA,b(x) := min
x∈Rn

h(Ax)− bTAx

Theorem

LetM be a deterministic first order method applied to solve binary logistic regression
whose iterates satisfy the linear span assumption. For any iteration count M and
constants n = 2T , N = 8T , there exist data matrix A ∈ RN×n, response vector
b ∈ {−1, 1}N , and corresponding objective function lA,b such that the T -th iterate
generated byM satisfies

lA,b(xT )− lA,b(x
∗) ≥ 3 ||A||2 ||x0 − x∗||2

32(2T + 1)(4T + 1)

and
||xT − x∗||2 > 1

8
||x0 − x∗||2 .
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BLR Lower Complexity Bound

Key ideas from Nemirovski:

Construct a worst-case instance of f such that any first order methodM struggles
to solve it. Done via Ak ,Wk , and bk similar to Nesterov

Find an "equivalent" function g such that it shares the first order information of f
and all iterates xt generated byM applied to g lie in a particular subspace. Done
using fk via linear span assumption

Show that the error at step t ofM applied to g is at least as large as the proposed
lower complexity bound. Done in the same way as Nemirovski

Do we need the linear span assumption, i.e. can we find a related function g similar to
Nemirovski?
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BLR Lower Complexity Bound

Lemma

For Ak , bk specified previously, any first order methodM, and some t ≤ k−3
2 , there exists

an orthogonal matrix Ut ∈ Rk×k satisfying

UtA
T
k bk = AT

k bk

WhenM is applied to solve lAkUt ,bk , the iterates x0, . . . , xt satisfy

xi ∈ UT
t X2i+1,k , i = 0, . . . , t.

Idea: use successive instances of the rotation lemma to find matrices that fix all
previous iterates and places the next iterate in a larger subspace

Show that a first order algorithm "can not tell a difference" of the original problem
and the rotated problem, i.e. they have the same first order information
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BLR Lower Complexity Bound

Objective Function

l∗A,b := min
x∈Rn

lA,b(x) := min
x∈Rn

h(Ax)− bTAx

Theorem

(Presented in [5]) For any first order methodM and fixed iteration number T with
corresponding constants N = 10T + 8, n = 4T + 2, there always exists data matrix
A ∈ RN×n and response vector b ∈ RN such that whenM is applied to solve lA,b, the
T -th iterate satisfies

lA,b(xT )− l∗A,b ≥
3 ||A||2 ||x0 − x∗||2

16(4T + 3)(8T + 5)

and
||xT − x∗||2 > 1

8
||x0 − x∗||2 .
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Lower Complexity Bound Summary

Smooth Convex

BLR

QP

O(1/
√
ε)

O(1/
√
ε)
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Concluding Remarks

Conditions
– First order oracle assumption
– Large dimensionality assumption

Unconstrained quadratic optimization of the form

min
x∈Rn

1
2
xTAx − bT x

has a lower bound complexity of O(1/
√
ε)

– OGD is optimal for smooth convex optimization
– CG is optimal for unconstrained quadratic optimization

(Homogeneous) Binary logistic regression of the form

min
x∈Rn

h(Ax)− bT (Ax)

has a lower bound complexity of O(1/
√
ε)

– OGD is optimal for homogeneous binary logistic regression
– OGD is optimal for inhomogeneous binary logistic regression
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