# Worst Case Datasets for Solving Binary Logistic Regression via Deterministic First-Order Methods 

Trevor Squires ${ }^{1}$

Thesis Defense, July 21, 2021

## 

${ }^{1}$ Supported by the National Science Foundation through grant DMS-1913006.

## Binary Logistic Regression (BLR)



## Binary Logistic Regression

$$
\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}} \sum_{i=1}^{N} 2 \log \left(1+\exp \left(-b_{(i)}\left(a_{i}^{T} x+y\right)\right)\right)
$$

- $a_{i}^{T}$ represent rows of data matrix $A \in \mathbb{R}^{N \times n}$
- $b_{(i)}$ are the entries of the response vector $b \in\{-1,1\}^{N}$
- Assumes $P\left(b_{(i)}=1 \mid a_{i}^{T} ; x, y\right)=\frac{1}{1+\exp \left(-a_{i}^{T} x+y\right)}$
- Model formulated by maximum likelihood estimation
- $n \gg 1$


## Introduction

Can we work with something cleaner? Define

$$
\begin{aligned}
h(u) \equiv h_{k}(u) & :=\sum_{i=1}^{k} 2 \log \left(2 \cosh \left(\frac{u_{(i)}}{2}\right)\right) \\
& =\sum_{i=1}^{k} 2 \log \left(\exp \left(\frac{u_{(i)}}{2}\right)+\exp \left(-\frac{u_{(i)}}{2}\right)\right) .
\end{aligned}
$$

for any $u \in \mathbb{R}^{k}$.

$$
\phi_{A, b}^{*}:=\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}} \phi_{A, b}(x, y):=h(A x+y 1)-b^{\top}(A x+y 1)
$$

Our goal: compute an $\varepsilon$-solution $(\hat{x}, \hat{y})$ such that $\phi_{A, b}(\hat{x}, \hat{y})-\phi_{A, b}^{*}<\varepsilon$ as quickly as possible.

## Introduction

Goal
Compute an $\varepsilon$-solution to

$$
\phi_{A, b}^{*}:=\min _{x \in \mathbb{R}^{n}, y \in \mathbb{R}} \phi_{A, b}(x, y):=h(A x+y 1)-b^{T}(A x+y 1)
$$

as quickly as possible.

- $\phi_{A, b}(x, y)$ has the following properties:
- $\phi_{A, b}(x, y)$ is convex
$-\nabla \phi_{A, b}(x, y)$ is Lipschitz continuous
- Solving for $\phi_{A, b}^{*}$ is smooth, convex, and unconstrained optimization
- Can relax to just solving smooth, convex problems


## Smooth Convex Optimization



## Smooth Convex Optimization

## Goal

Compute an $\varepsilon$-solution to

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x)
$$

as quickly as possible. Here, $f$ is convex differentiable and has L-Lipschitz continuous gradient, i.e. $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \forall x, y \in \mathbb{R}^{n}$.

- Large class of problems
- Examples include
- Regularized Linear Least Squares

$$
f(x)=\frac{1}{2}\|A x-b\|^{2}+\lambda\|x\|^{2}
$$

- Quadratic Programming

$$
f(x)=\frac{1}{2} x^{T} A x-b^{T} x, A \succeq 0
$$

- What is a first order method?
- any method $\mathcal{M}$ such that $\mathcal{M}$ accesses the first order information of $f$ through a deterministic oracle $\mathcal{O}_{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ with $\mathcal{O}_{f}(x)=(f(x), \nabla f(x))$ for $x \in \mathbb{R}^{n}$


## Smooth Convex Optimization

## Algorithm 1 Nesterov's accelerated gradient descent (NAGD)

Select parameters $\gamma_{k} \in(0,1]^{N}, \eta_{k}$. Choose $x_{0} \in \mathbb{R}^{n}$. Set $y_{0}=x_{0}$. for $k=1, \ldots, N$ do

$$
\begin{aligned}
& z_{k}=\left(1-\gamma_{k}\right) y_{k-1}+\gamma_{k} x_{k-1} \\
& x_{k}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\langle\nabla f\left(z_{k}\right), x\right\rangle+\frac{\eta_{k}}{2}\left\|x_{k-1}-x\right\|_{2}^{2} \\
& y_{k}=\left(1-\gamma_{k}\right) y_{k-1}+\gamma_{k} x_{k}
\end{aligned}
$$

end for
Output $y_{N}$.

- Depends on parameters $\gamma_{k}, \eta_{k}$.
- Different parameter settings $=$ different performance


## Smooth Convex Optimization

## Goal

Compute an $\varepsilon$-solution to

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x)
$$

as quickly as possible. Here, $f$ is convex differentiable and has L-Lipschitz continuous gradient, i.e. $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \forall x, y \in \mathbb{R}^{n}$.

If we set $\gamma_{k} \equiv 1$ and $\eta_{k} \equiv L$ in NAGD, then

- $x_{k}=\left(x_{k-1}-\frac{1}{L} \nabla f\left(x_{k-1}\right)\right)$
- NAGD reduces to gradient descent (GD)
- $f\left(\tilde{y}_{N}\right)-f\left(x^{*}\right) \leq \frac{L\left\|x^{*}-x_{0}\right\|^{2}}{N+1}$ where $\tilde{y}_{N}=\sum_{k=0}^{N} y_{k} /(N+1)$
- Computes an $\varepsilon$-solution in $\mathcal{O}(1 / \varepsilon)$ iterations

GD provides an upper complexity bound of $\mathcal{O}(1 / \varepsilon)$ for smooth convex optimization. Is this "as quickly as possible?"

## Smooth Convex Optimization

## Goal

Compute an $\varepsilon$-solution to

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x)
$$

as quickly as possible. Here, $f$ is convex differentiable and has L-Lipschitz continuous gradient, i.e. $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \forall x, y \in \mathbb{R}^{n}$.

If we set $\gamma_{k}=\frac{2}{k+1}$ and $\eta_{k}=\frac{2 L}{k}$ in NAGD, then

- $f\left(y_{N}\right)-f\left(x^{*}\right) \leq \frac{4 L}{N(N+1)}\left\|x^{*}-x_{0}\right\|^{2}$
- Computes an $\varepsilon$-solution in $\mathcal{O}(1 / \sqrt{\varepsilon})$ iterations
- Asymptotically better than gradient descent
- Called Optimal Gradient Descent (OGD)

OGD provides an upper complexity bound of $\mathcal{O}(1 / \sqrt{\varepsilon})$ for smooth convex optimization. Is this "as quickly as possible?"

## Lower Complexity Bound

## Goal

Compute an $\varepsilon$-solution to

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x)
$$

as quickly as possible.

- What does "as quickly as possible" mean?
- How can we evaluate the worst-case performance of an algorithm?
- Search for some "difficult" problem instance such that said algorithm struggles to solve it.
- A worst case problem instance for a class of algorithms provides a lower complexity bound.


## Complexity Bounds



## Algorithm Class Comparison

## Goal

Compute an $\varepsilon$-solution to

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x)
$$

as quickly as possible.

- Why exactly do we consider iterative first order method?
- Consider a simple problem class: quadratic programming

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} A x-b^{T} x, A \succeq 0
$$

- second order methods (Newton's) require 1 iteration of $\mathcal{O}\left(n^{3}\right)$ (requires linear system solve) flops
- first order methods require $t$ iterations of $\mathcal{O}\left(n^{2}\right)$ flops
- If $t \leq n$, i.e. when $n$ is large, first order seems best


## Smooth Convex Optimization

## Goal

Compute an $\varepsilon$-solution to

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x)
$$

as quickly as possible. Here, $f$ is convex differentiable and has L-Lipschitz continuous gradient, i.e. $\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\|, \forall x, y \in \mathbb{R}^{n}$.

Let's review

- Binary logistic regression is in the class of smooth convex optimization problems
- Optimal gradient descent solves smooth convex optimization problems in $\mathcal{O}(1 / \sqrt{\varepsilon})$ iterations
- We hope to find a problem instance such that no first order method can solve it faster than $\mathcal{O}(1 / \sqrt{\varepsilon})$


## Lower Complexity Bound Goal



## Complexity Bounds

In [1], Nemirovski showed that the lower complexity bound of solving

$$
f^{*}:=\min _{x \in \mathbb{R}^{n}} f(x):=Q_{A, b}(x):=\frac{1}{2} x^{T} A x-b^{T} x
$$

via first order deterministic methods was $\mathcal{O}(1 / \sqrt{\varepsilon})$, i.e. OGD is indeed optimal. Key ideas from Nemirovski:

- Construct a worst-case instance of $f$ such that any first order method $\mathcal{M}$ struggles to solve it.
- Find an "equivalent" function $g$ such that all iterates $x_{t}$ generated by $\mathcal{M}$ applied to $g$ lie in a particular subspace.
- Show that the error at step $t$ of $\mathcal{M}$ applied to $g$ is at least as large as the proposed lower complexity bound.


## Nemivroski+Nesterov Proof Sketch

## Key Idea

Construct a worst-case instance of $f$ such that any first order method $\mathcal{M}$ struggles to solve it.

- $A_{4 k+3}=\left(\begin{array}{cccccc}2 & -1 & & & & \\ -1 & 2 & -1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \\ & & & & -1 & 2\end{array}\right)$
- $A=\frac{L}{4}\left(\begin{array}{cc}A_{4 k+3} & 0 \\ 0 & 0\end{array}\right) \in \mathbb{R}^{n \times n}, b=\frac{L}{4} e_{1}$
$\min _{x \in \mathcal{K}_{2 k+1}(A, b)} Q_{A, b}(x)-\min _{x \in \mathbb{R}^{n}} Q_{A, b}(x) \geq \frac{3 L\left\|x^{*}\right\|^{2}}{128(k+1)^{2}}$
- Here, $\mathcal{K}_{r}(A, b)=\operatorname{span}\left\{b, A b, \ldots, A^{r-1} b\right\}$

If each iterate $x_{t} \in \mathcal{K}_{2 k+1}(A, b)$, we are done!

## Nemirovski+Nesterov Proof Sketch

Key Idea
Find an "equivalent" function $g$ such that all iterates $x_{t}$ generated by $\mathcal{M}$ applied to $g$ lie in a particular subspace.

- If $x_{t} \notin \mathcal{K}_{2 k+1}(A, b)$, we can rotate the problem, i.e. find $g(x):=f(U x)$, such that
- $x_{t} \in U^{T} \mathcal{K}_{2 k+1}(A, b)$ for some orthogonal matrix $U$ satisfying $U b=b$
$-\min _{x \in U^{T} \mathcal{K}_{r}(A, b)} Q_{U^{\top} A U, b}(x)-\min _{x \in \mathbb{R}^{n}} Q_{U^{\top} A U, b}(x)=\min _{x \in \mathcal{K}_{r}(A, b)} Q_{A, b}(x)-\min _{x \in \mathbb{R}^{n}} Q_{A, b}(x)$
- If $g$ and $f$ have the same first order information at the oracle query points, then $\mathcal{M}$ "cannot differentiate" between the two
- Utilizes an important lemma


## Lemma

Let $X$ and $Y$ be two linear subspaces satisfying $X \subsetneq Y \subseteq \mathbb{R}^{p}$. Then for any $y \in \mathbb{R}^{p}$, there exists orthogonal matrix $V$ such that

$$
V_{y} \in Y \text { and } V x=x, \forall x \in X
$$

## Nemirovski+Nesterov Proof Sketch

## Key Idea

Show that the error at step $t$ of $\mathcal{M}$ applied to the rotated objective function is at least as large as the proposed lower complexity bound.

## Theorem

For any first order iterative method $\mathcal{M}$ and iterate $k \leq \frac{n-3}{4}$, there exists some smooth convex function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with L-Lipschitz gradient such that $x_{k}$ generated by $\mathcal{M}$ satisfies

$$
g\left(x_{k}\right)-\min _{x \in \mathbb{R}^{n}} g(x) \geq \frac{3 L\left\|x_{0}-x^{*}\right\|^{2}}{128(k+1)^{2}}
$$

We conclude OGD is optimal for smooth convex optimization

## Nemirovski vs. Nesterov Technique

Nemirovski:

- Constructed $A$ by characterizing its spectrum
- WLOG may assume $A$ is diagonal since for $A=V^{T} \wedge V$,

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} A x-b^{T} x=\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} V^{T} \Lambda V x-b^{T} V^{T} V x=\min _{y \in \mathbb{R}^{n}} \frac{1}{2} y^{T} \Lambda y-b^{*} y
$$

- Enforced iterates in Krylov subspace using rotation/orthogonal invariance trick
- Pros: Rigorous, general
- Cons: Hard to follow, diagonalization may not hold in other setting Nesterov:
- Constructed $A$ using tridiagonal form
- Enforce iterates in Krylov subspace using linear span assumption (shown in [2])
- Pros: Easy to follow
- Cons: Requires assumption


## Lower Complexity Extensions

- There exists the following other available lower complexity bound results on deterministic first order methods for convex optimization $f^{*}:=\min _{x} f(x)$.
- when $f$ is convex, the lower complexity bound is $\mathcal{O}\left(1 / \varepsilon^{2}\right)[1,2]$
- when $f$ is convex, nonsmooth with bilinear saddle point structure, the lower complexity bound is $\mathcal{O}(1 / \varepsilon)$ [3]
- when $f$ is strongly convex, smooth the lower complexity bound is $\mathcal{O}(\log (1 / \varepsilon))$ [2, 4]
- What about binary logistic regression?
- can we do better than smooth convex optimization?
- can we adapt Nemirovski/Nesterov's idea to binary logistic regression?


## Lower Complexity Bound Summary



## BLR Lower Complexity Bound

- Extend this result to binary logistic regression problems
- Construct a worst-case dataset for solving binary logistic regression that requires $\mathcal{O}(1 / \sqrt{\varepsilon})$ first order oracle calls
- These worst-case constructions will satisfy $y^{*}=0$. Consequently, it suffices to solve the logistic model with homogeneous linear predictor

$$
I_{A, b}(x)=h(A x)-b^{T} A x
$$

and corresponding problem

$$
I_{A, b}^{*}=\min _{x \in \mathbb{R}^{n}} I_{A, b}(x)
$$

- We assume that
- (initially) the iterates of a deterministic first order method $\mathcal{M}$ satisfy $x_{t} \in \operatorname{span}\left\{\nabla f\left(x_{0}\right), \ldots, \nabla f\left(x_{t-1}\right)\right\}$
$-x_{0}=0$
- $x_{t}$ 's are inquiry points and approximate solutions


## BLR Lower Complexity Bound

## Binary Logistic Regression

$$
I_{A, b}^{*}:=\min _{x \in \mathbb{R}^{n}} I_{A, b}(x):=h(A x)-b^{T} A x
$$

- Given any $k$, let $W_{k}:=\left(\begin{array}{ccccc} & & & -1 & 1 \\ & & -1 & 1\end{array}\right) \in \mathbb{R}^{k \times k}, A_{k}:=\left(\begin{array}{c}2 \sigma W_{k} \\ -2 \zeta W_{k} \\ -2 \sigma W_{k} \\ 2 \zeta W_{k}\end{array}\right) \in$

$$
\mathbb{R}^{4 k \times k}, b_{k}=\binom{1_{2 k}}{-1_{2 k}} \in \mathbb{R}^{4 k} \text { and } \sigma>\zeta>0
$$

- Define $f_{k}(x):=h\left(A_{k} x\right)-b_{k}^{T}\left(A_{k} x\right)$ and $\phi_{k}(x, y):=h\left(A_{k} x+y 1_{k}\right)-b_{k}^{T}\left(A_{k} x+y 1_{k}\right)$
- $x^{*}=\underset{x \in \mathbb{R}^{k}}{\operatorname{argmin}} f_{k}=c(1,2, \ldots, k)^{T}$
- $f_{k}^{*}=f_{k}\left(x^{*}\right)=8 k \log 2+4 k(\log \cosh (\sigma c)+\log \cosh (\zeta c)-(\sigma-\zeta) c)$


## Properties of $W_{k}$ and $A_{k}$

## Objective Functions

$$
W_{k}:=\left(\begin{array}{ccccc} 
& & & -1 & 1 \\
& & -1 & 1 & \\
& . \cdot & . \cdot & \\
-1 & 1 & &
\end{array}\right), A_{k}:=\left(\begin{array}{c}
2 \sigma W_{k} \\
-2 \zeta W_{k} \\
-2 \sigma W_{k} \\
2 \zeta W_{k}
\end{array}\right), b_{k}=\binom{\mathbf{1}_{2 k}}{-1_{2 k}}
$$

- Define for any positive integers $t$ and $k$

$$
\mathcal{X}_{t, k}:=\operatorname{span}\left\{e_{k-t+1, k}, \ldots, e_{k, k}\right\}, \forall k, 1 \leq t \leq k
$$

and

$$
\mathcal{Y}_{t, k}:=\operatorname{span}\left\{e_{1,4 k}, \ldots, e_{t, 4 k}, e_{k+1,4 k}, \ldots, e_{k+t, 4 k}, \ldots, e_{3 k+1,4 k}, \ldots, e_{3 k+t, 4 k}\right\}
$$

- $W_{k} 1_{k}=e_{k, k}, A_{k}^{T} b_{k} \in \mathcal{X}_{k, k}$
- For $x=\binom{0_{k-t}}{u} \in \mathcal{X}_{t, k}, W_{k} x=\binom{W_{t} u}{0_{k-t}}$, and $A_{k} x, \nabla h\left(A_{k} x\right) \in \mathcal{Y}_{t, k}$
- For $y=\binom{v}{0_{k-t}} \in \mathcal{X}_{k-t, k}^{c}, W_{k}^{T} v=\left(\begin{array}{c}0_{k-t-1} \\ -v_{(t)} \\ W_{t} v\end{array}\right) \in \mathcal{X}_{t+1, k}$
- $A_{k}^{T} \nabla h\left(A_{k} x\right)=4 \sigma W_{k}^{T}\binom{\tanh \left(\sigma W_{t} u\right)}{0_{k-t}}+4 \zeta W_{k}^{T}\binom{\tanh \left(\zeta W_{t} u\right)}{0_{k-t}} \in \mathcal{X}_{t+1, k}$


## Properties of $W_{k}$ and $A_{k}$

## Linear Span Assumption

When $\mathcal{M}$ is applied to solve $f_{k}$, the iterates $x_{t}$ generated by $\mathcal{M}$ satisfy

$$
x_{t} \in \operatorname{span}\left\{\nabla f_{k}\left(x_{0}\right), \ldots, \nabla f_{k}\left(x_{t-1}\right)\right\}
$$

- Recall: $A_{k}^{T} b_{k} \in \mathcal{X}_{k, k}$
- Recall: $A_{k}^{T} \nabla h\left(A_{k} x\right) \in \mathcal{X}_{t+1, k}$
- $\nabla f_{k}\left(x_{t}\right)=A_{k}^{T} \nabla h\left(A_{k} x\right)-A_{k}^{T} b_{k} \in \mathcal{X}_{t+1, k}$
- The linear span assumption gives $x_{t} \in \mathcal{X}_{t, k}$ "for free"
- Can compute $\min _{x \in \mathcal{X}_{t, k}} f_{k}(x)-f_{k}^{*}=8(k-t) \log 2+f_{t}^{*}-f_{k}^{*}$


## BLR Lower Complexity Bound

## Objective Function

$$
I_{A, b}^{*}:=\min _{x \in \mathbb{R}^{n}} I_{A, b}(x):=\min _{x \in \mathbb{R}^{n}} h(A x)-b^{T} A x
$$

## Theorem

Let $\mathcal{M}$ be a deterministic first order method applied to solve binary logistic regression whose iterates satisfy the linear span assumption. For any iteration count $M$ and constants $n=2 T, N=8 T$, there exist data matrix $A \in \mathbb{R}^{N \times n}$, response vector $b \in\{-1,1\}^{N}$, and corresponding objective function $I_{A, b}$ such that the $T$-th iterate generated by $\mathcal{M}$ satisfies

$$
I_{A, b}\left(x_{T}\right)-I_{A, b}\left(x^{*}\right) \geq \frac{3\|A\|^{2}\left\|x_{0}-x^{*}\right\|^{2}}{32(2 T+1)(4 T+1)}
$$

and

$$
\left\|x_{T}-x^{*}\right\|^{2}>\frac{1}{8}\left\|x_{0}-x^{*}\right\|^{2}
$$

## BLR Lower Complexity Bound

Key ideas from Nemirovski:

- Construct a worst-case instance of $f$ such that any first order method $\mathcal{M}$ struggles to solve it. Done via $A_{k}, W_{k}$, and $b_{k}$ similar to Nesterov
- Find an "equivalent" function $g$ such that it shares the first order information of $f$ and all iterates $x_{t}$ generated by $\mathcal{M}$ applied to $g$ lie in a particular subspace. Done using $f_{k}$ via linear span assumption
- Show that the error at step $t$ of $\mathcal{M}$ applied to $g$ is at least as large as the proposed lower complexity bound. Done in the same way as Nemirovski

Do we need the linear span assumption, i.e. can we find a related function $g$ similar to Nemirovski?

## BLR Lower Complexity Bound

## Lemma

For $A_{k}, b_{k}$ specified previously, any first order method $\mathcal{M}$, and some $t \leq \frac{k-3}{2}$, there exists an orthogonal matrix $U_{t} \in \mathbb{R}^{k \times k}$ satisfying

- $U_{t} A_{k}^{T} b_{k}=A_{k}^{T} b_{k}$
- When $\mathcal{M}$ is applied to solve $I_{A_{k} U_{t}, b_{k}}$, the iterates $x_{0}, \ldots, x_{t}$ satisfy

$$
x_{i} \in U_{t}^{T} \mathcal{X}_{2 i+1, k}, i=0, \ldots, t
$$

- Idea: use successive instances of the rotation lemma to find matrices that fix all previous iterates and places the next iterate in a larger subspace
- Show that a first order algorithm "can not tell a difference" of the original problem and the rotated problem, i.e. they have the same first order information


## BLR Lower Complexity Bound

## Objective Function

$$
I_{A, b}^{*}:=\min _{x \in \mathbb{R}^{n}} I_{A, b}(x):=\min _{x \in \mathbb{R}^{n}} h(A x)-b^{T} A x
$$

## Theorem

(Presented in [5]) For any first order method $\mathcal{M}$ and fixed iteration number $T$ with corresponding constants $N=10 T+8, n=4 T+2$, there always exists data matrix $A \in \mathbb{R}^{N \times n}$ and response vector $b \in \mathbb{R}^{N}$ such that when $\mathcal{M}$ is applied to solve $I_{A, b}$, the $T$-th iterate satisfies

$$
I_{A, b}\left(x_{T}\right)-I_{A, b}^{*} \geq \frac{3\|A\|^{2}\left\|x_{0}-x^{*}\right\|^{2}}{16(4 T+3)(8 T+5)}
$$

and

$$
\left\|x_{T}-x^{*}\right\|^{2}>\frac{1}{8}\left\|x_{0}-x^{*}\right\|^{2} .
$$

## Lower Complexity Bound Summary



## Concluding Remarks

- Conditions
- First order oracle assumption
- Large dimensionality assumption
- Unconstrained quadratic optimization of the form

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} A x-b^{T} x
$$

has a lower bound complexity of $\mathcal{O}(1 / \sqrt{\varepsilon})$

- OGD is optimal for smooth convex optimization
- CG is optimal for unconstrained quadratic optimization
- (Homogeneous) Binary logistic regression of the form

$$
\min _{x \in \mathbb{R}^{n}} h(A x)-b^{T}(A x)
$$

has a lower bound complexity of $\mathcal{O}(1 / \sqrt{\varepsilon})$

- OGD is optimal for homogeneous binary logistic regression
- OGD is optimal for inhomogeneous binary logistic regression


## References

F A. Nemirovski and D. Yudin.
Problem complexity and method efficiency in optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.
Y. E. Nesterov.

Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, Massachusetts, 2004.


Yuyuan Ouyang and Yangyang Xu.
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems.
Mathematical Programming, pages 1-35, 2019.
R Blake Woodworth, Jialei Wang, Brendan McMahan, and Nathan Srebro.
Graph oracle models, lower bounds, and gaps for parallel stochastic optimization.
arXiv preprint arXiv:1805.10222, 2018.
R
Yuyuan Ouyang and Trevor Squires.
Some worst-case datasets of deterministic first-order methods for solving binary logistic regression.
Inverse Problems and Imaging, 2019.

