
Sliding Alternating Direction Method of Multipliers

Yuyuan Ouyang and Trevor Squires1

INFORMS Annual Meeting 2020

1This research is partially supported by US Dept. of the Air Force grant FA9453-19-1-0078 and NSF
grant DMS-1913006.

SADMM July 20, 2021 1 / 20

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε using a first order method.

X ⊂ Rn is closed, convex
K ∈ Rm×n

f and h are real-valued, convex functions

We further assume that

∇f is Lipschitz continuous with Lipschitz constant L
X is easy to project to
The proximal mapping problem involving h(·) is easy, i.e.

min
w∈Rm

h(w) +
ρ

2
‖w − z‖2

can be solved quickly.

SADMM July 20, 2021 2 / 20

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε using a first order method.

X ⊂ Rn is closed, convex
K ∈ Rm×n

f and h are real-valued, convex functions

We further assume that

∇f is Lipschitz continuous with Lipschitz constant L
X is easy to project to
The proximal mapping problem involving h(·) is easy, i.e.

min
w∈Rm

h(w) +
ρ

2
‖w − z‖2

can be solved quickly.

SADMM July 20, 2021 2 / 20

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε using a first order method.

X ⊂ Rn is closed, convex
K ∈ Rm×n

f and h are real-valued, convex functions

We further assume that

∇f is Lipschitz continuous with Lipschitz constant L
X is easy to project to
The proximal mapping problem involving h(·) is easy, i.e.

min
w∈Rm

h(w) +
ρ

2
‖w − z‖2

can be solved quickly.
SADMM July 20, 2021 2 / 20

Problem Setting

In algorithms to follow, it is sometimes useful to view (CO) as an affinely constrained
optimization problem.

Affinely Convex Optimization

Equivalently, we rewrite (CO) as

F ∗ := min
x∈X ,z∈Z

f (x) + h(z) s.t. Kx − b = z . (ACO)

SADMM July 20, 2021 3 / 20

Problem Setting

Convex Optimization

Our problem of interest is the minimization problem

F ∗ := min
x∈X

f (x) + h(Kx − b). (CO)

Examples of (CO) include

f (x) = 1
2 ||Ax − b||22 , f (x) =

∑N
i=1 2 log

(
1 + exp

(
−b(i)(aTi x + y)

))
h(x) = λ ||x ||p, p = 1, 2, or ∞
X = {x | ||x || ≤ 1},X = {x |

∑
i xi = 1, x ≥ 0}

SADMM July 20, 2021 4 / 20

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

Two questions come to mind:

How do we measure the efficiency of an algorithm?

What does it mean to be "as quickly as possible"?

SADMM July 20, 2021 5 / 20

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

Two questions come to mind:

How do we measure the efficiency of an algorithm?

What does it mean to be "as quickly as possible"?

SADMM July 20, 2021 5 / 20

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

Two questions come to mind:

How do we measure the efficiency of an algorithm?

What does it mean to be "as quickly as possible"?

SADMM July 20, 2021 5 / 20

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

How do we measure the efficiency of an algorithm?

define some oracle O : Rn → S

oracle complexity theory assumes a methodM accesses information only through
querying O during each iteration

efficiency is measured by the number of times O is queried byM
Example: Gradient Descent

xk+1 = xk − αk∇f (xk)

can be evaluated under oracle O(x) = (f (x),∇f (x)). It requires on the order of 1/ε
oracle queries to obtain an ε-solution.

SADMM July 20, 2021 6 / 20

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

How do we measure the efficiency of an algorithm?

define some oracle O : Rn → S

oracle complexity theory assumes a methodM accesses information only through
querying O during each iteration

efficiency is measured by the number of times O is queried byM

Example: Gradient Descent
xk+1 = xk − αk∇f (xk)

can be evaluated under oracle O(x) = (f (x),∇f (x)). It requires on the order of 1/ε
oracle queries to obtain an ε-solution.

SADMM July 20, 2021 6 / 20

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

How do we measure the efficiency of an algorithm?

define some oracle O : Rn → S

oracle complexity theory assumes a methodM accesses information only through
querying O during each iteration

efficiency is measured by the number of times O is queried byM
Example: Gradient Descent

xk+1 = xk − αk∇f (xk)

can be evaluated under oracle O(x) = (f (x),∇f (x)). It requires on the order of 1/ε
oracle queries to obtain an ε-solution.

SADMM July 20, 2021 6 / 20

Lower Complexity Bound - a worst case problem instance

Smooth Convex

Subset 1

O(1/
√
ε)

Subset 2

O(log(1/ε))

O(1/
√
ε)

SADMM July 20, 2021 7 / 20

Lower Complexity Bound - a worst case problem instance

Smooth Convex

Subset 1

O(1/
√
ε)

Subset 2

O(log(1/ε))

O(1/
√
ε)

SADMM July 20, 2021 7 / 20

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

What does it mean to be "as quickly as possible"?

define some oracle O : Rn → S

show the method matches the lower complexity bound of the corresponding oracle

SADMM July 20, 2021 8 / 20

Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?

SADMM July 20, 2021 9 / 20

Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?

SADMM July 20, 2021 9 / 20

Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?

SADMM July 20, 2021 9 / 20

Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?

SADMM July 20, 2021 9 / 20

Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?

SADMM July 20, 2021 9 / 20

Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?

SADMM July 20, 2021 9 / 20

Solving (CO)

Algorithm 1 Nesterov’s accelerated gradient descent (NAGD)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (xk), u〉+ h(Ku − b) +
ηk
2
‖u − xk−1‖2,

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output x̄N .

reduces to gradient descent when X = Rn, h ≡ 0, γk = 1
computes ε-solution in only O(

√
L/ε) iterations

is optimal for solving problems such as (CO) using oracle O(x) = (f (x),∇f (x)) ([1])

potentially problematic subproblem
need another oracle to measure the ambiguity in subproblem difficulty

SADMM July 20, 2021 10 / 20

Solving (CO)

Algorithm 2 Nesterov’s accelerated gradient descent (NAGD)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (xk), u〉+ h(Ku − b) +
ηk
2
‖u − xk−1‖2,

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output x̄N .

reduces to gradient descent when X = Rn, h ≡ 0, γk = 1
computes ε-solution in only O(

√
L/ε) iterations

is optimal for solving problems such as (CO) using oracle O(x) = (f (x),∇f (x)) ([1])
potentially problematic subproblem
need another oracle to measure the ambiguity in subproblem difficulty

SADMM July 20, 2021 10 / 20

Solving (CO)

Algorithm 3 Nesterov’s Smoothing Algorithm (NEST-S)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

yk =argmin
v∈Rm

− 〈Kxk , v〉+ h∗(v) +
ρ

2
‖v‖2,

xk =argmin
u∈X

〈∇f (xk) + K>yk〉+
ηk
2
‖u − xk−1‖2,

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output x̄N .

replaces nonsmooth h with smooth approximation
subproblem becomes easy, but need to compute smooth approximation of h
computes ε-solution in O(

√
L/ε+ ||K || /ε) oracle calls of

O(x , y) = (∇f (x),Kx ,KT y)

SADMM July 20, 2021 11 / 20

Solving (CO)

Algorithm 4 Alternating Direction Method of Multipliers (ADMM)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for k = 1, . . . ,N do

xk =argmin
u∈X

f (u) + 〈yk−1,Ku − b − zk−1〉+
ηk
2
||Ku − b − zk−1||2

zk =argmin
w∈Rm

− 〈yk−1,w〉+ h(w) +
τk
2
‖Kxk − w‖2,

yk =yk−1 − ρk(Kxk − zk).

end for
Output xN .

alternates updating primal and dual variables

computes ε-solution in O((L + ||K ||)/ε) oracle calls of O(x , y) = (∇f (x),Kx ,KT y)

SADMM July 20, 2021 12 / 20

Solving (CO)

Algorithm 5 Linearized Alternating Direction Method of Multipliers (L-ADMM)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for k = 1, . . . ,N do

xk =argmin
u∈X

〈∇f (xk), u〉+ K>(yk−1 + θk(Kxk−1 − zk−1)), u〉+
ηk
2
‖u − xk−1‖2

zk =argmin
w∈Rm

− 〈yk−1,w〉+ h(w) +
τk
2
‖Kxk − w‖2,

yk =yk−1 − ρk(Kxk − zk).

end for
Output xN .

alternates updating primal and dual variables

computes ε-solution in O((L + ||K ||)/ε) oracle calls of O(x , y) = (∇f (x),Kx ,KT y)

introduces linearization for simpler xk subproblems

SADMM July 20, 2021 13 / 20

Solving (CO)

Algorithm 6 Accelerated Alternating Direction Method of Multipliers (A-ADMM)

Start: Choose x0 ∈ X . Set x0 := x0, y0 := 0, and z0 := Kx0.
for k = 1, . . . ,N do

xk =(1− γk)xk−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (xk), u〉+ K>(yk−1 + θk(Kxk−1 − zk−1)), u〉+
ηk
2
‖u − xk−1‖2

zk =argmin
w∈Rm

− 〈yk−1,w〉+ h(w) +
τk
2
‖Kxk − w‖2,

yk =yk−1 − ρk(Kxk − zk).

xk =(1− γk)xk−1 + γkxk .

end for
Output xN .

acceleration motivated by NAGD
was shown in [2] that it computes ε-solution in O(

√
L/ε+ ||K || /ε) oracle calls of

O(x , y) = (∇f (x),Kx ,KT y)

SADMM July 20, 2021 14 / 20

Improving the Oracle Idea

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

A few remarks:
1 For oracle O(x) = (∇f (x),Kx ,KT y), both A-ADMM and NEST-S only require
O(
√

L/ε+ ||K || /ε) calls.
2 In [3], it was shown that O(

√
L/ε+ ||K || /ε) is the lower complexity bound for

problems of the form (CO) using oracle (∇f (x),Kx ,KT y).

We then make the following observations
1 Whenever we simply count gradient evaluations, the problem can be solved in
O(
√

L/ε) calls.
2 Whenever operator evaluations are involved, the number of calls increases to
O(
√

L/ε+ ||K || /ε).

Perhaps there is an algorithm that keeps O(
√

L/ε) gradient evaluations while still keeps
the operator evaluations low.

SADMM July 20, 2021 15 / 20

Improving the Oracle Idea

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

A few remarks:
1 For oracle O(x) = (∇f (x),Kx ,KT y), both A-ADMM and NEST-S only require
O(
√

L/ε+ ||K || /ε) calls.
2 In [3], it was shown that O(

√
L/ε+ ||K || /ε) is the lower complexity bound for

problems of the form (CO) using oracle (∇f (x),Kx ,KT y).
We then make the following observations

1 Whenever we simply count gradient evaluations, the problem can be solved in
O(
√

L/ε) calls.
2 Whenever operator evaluations are involved, the number of calls increases to
O(
√

L/ε+ ||K || /ε).

Perhaps there is an algorithm that keeps O(
√

L/ε) gradient evaluations while still keeps
the operator evaluations low.

SADMM July 20, 2021 15 / 20

Improving the Oracle Idea

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

A few remarks:
1 For oracle O(x) = (∇f (x),Kx ,KT y), both A-ADMM and NEST-S only require
O(
√

L/ε+ ||K || /ε) calls.
2 In [3], it was shown that O(

√
L/ε+ ||K || /ε) is the lower complexity bound for

problems of the form (CO) using oracle (∇f (x),Kx ,KT y).
We then make the following observations

1 Whenever we simply count gradient evaluations, the problem can be solved in
O(
√

L/ε) calls.
2 Whenever operator evaluations are involved, the number of calls increases to
O(
√

L/ε+ ||K || /ε).

Perhaps there is an algorithm that keeps O(
√

L/ε) gradient evaluations while still keeps
the operator evaluations low.

SADMM July 20, 2021 15 / 20

Solving (CO) with Sliding

Algorithm 7 Gradient Sliding (GS)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =Subgradient(〈∇f (xk), u〉+ h(Ku − b) +
ηk
2
‖u − xk−1‖2)

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output xN .

same as NAGD, but solves subproblem using subgradient method

was shown in [4] that it computes ε-solution in only O(
√

L/ε) gradient calls, but
O(
√

L/ε+ (||K || /ε)2) operator calls

improves gradient calls from A-ADMM and NEST-S, but increases operator calls

SADMM July 20, 2021 16 / 20

Solving (CO) with Sliding

Algorithm 8 Gradient Sliding (GS)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =Subgradient(〈∇f (xk), u〉+ h(Ku − b) +
ηk
2
‖u − xk−1‖2)

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output xN .

same as NAGD, but solves subproblem using subgradient method

was shown in [4] that it computes ε-solution in only O(
√

L/ε) gradient calls, but
O(
√

L/ε+ (||K || /ε)2) operator calls

improves gradient calls from A-ADMM and NEST-S, but increases operator calls

SADMM July 20, 2021 16 / 20

Solving (CO) with Sliding

Algorithm 9 Gradient sliding alternating direction method of multipliers (GS-ADMM)

Start: Choose x0 ∈ X and set x0 := x0

for k = 1, . . . ,N do

xk =(1− γk)xk−1 + γkxk−1

(x̃k , xk , yk , zk) =ApproxGS(∇f (xk), xk−1, yk−1, zk−1)

xk =(1− γk)xk−1 + γk x̃k

end for
Output xN .

here, the subproblem is approximately solved using a variant of L-ADMM
(ApproxGS)

computes ε-solution in only O(
√

L/ε) gradient calls and O(
√

L/ε+ ||K || /ε)
operator calls

clear improvement from A-ADMM and NEST-S

SADMM July 20, 2021 17 / 20

Solving (CO) with Sliding

Algorithm 10 Gradient sliding alternating direction method of multipliers (GS-ADMM)

Start: Choose x0 ∈ X and set x0 := x0

for k = 1, . . . ,N do

xk =(1− γk)xk−1 + γkxk−1

(x̃k , xk , yk , zk) =ApproxGS(∇f (xk), xk−1, yk−1, zk−1)

xk =(1− γk)xk−1 + γk x̃k

end for
Output xN .

here, the subproblem is approximately solved using a variant of L-ADMM
(ApproxGS)

computes ε-solution in only O(
√

L/ε) gradient calls and O(
√

L/ε+ ||K || /ε)
operator calls

clear improvement from A-ADMM and NEST-S

SADMM July 20, 2021 17 / 20

Comparison of Algorithms

N
A
G
D

N
E
ST

-S

L-
A
D
M
M

A
-A

D
M
M

G
S

A
G
S

G
S-
A
SM

M

O
S-
A
D
M
M

O
(√

L
ε

)
X X X X

O
(

L+||K ||
ε

)
XGradient Evals

O
(√

L
ε

+ ||K ||
ε

)
X X X

O
(√

L
ε

+ ||K ||
ε

)
X X X X

O
(

L+||K ||
ε

)
X

O
(

L+||K ||
ε2

)
X

Operator Evals

O
(
||K ||
ε

)
X

SADMM July 20, 2021 18 / 20

Numerical Example

Problem setting:

motivated from worst-case instance in [3]

f (x) = 1
2 ||Ax − b||22 , h(x) = λ ||Kx − b||2

sparse K , dense A

SADMM July 20, 2021 19 / 20

Numerical Example

Problem setting:

motivated from worst-case instance in [3]

f (x) = 1
2 ||Ax − b||22 , h(x) = λ ||Kx − b||2

sparse K , dense A

SADMM July 20, 2021 19 / 20

Numerical Example

Problem setting:

motivated from worst-case instance in [3]

f (x) = 1
2 ||Ax − b||22 , h(x) = λ ||Kx − b||2

sparse K , dense A

SADMM July 20, 2021 19 / 20

Numerical Example

Problem setting:

motivated from worst-case instance in [3]

f (x) = 1
2 ||Ax − b||22 , h(x) = λ ||Kx − b||2

sparse K , dense A

SADMM July 20, 2021 19 / 20

References

A. Nemirovski and D. Yudin.
Problem complexity and method efficiency in optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.

Yuyuan Ouyang, Yunmei Chen, Guanghui Lan, and Jr. Eduardo Pasiliao.
An accelerated linearized alternating direction method of multipliers.
SIAM Journal on Imaging Sciences, 8(1):644–681, 2015.

Yuyuan Ouyang and Yangyang Xu.
Lower complexity bounds of first-order methods for convex-concave bilinear
saddle-point problems.
Mathematical Programming, pages 1–35, 2019.

Guanghui Lan.
Gradient sliding for composite optimization.
Mathematical Programming, 159(1-2):201–235, 2016.

SADMM July 20, 2021 20 / 20

