Sliding Alternating Direction Method of Multipliers

Yuyuan Ouyang and Trevor Squires ${ }^{1}$

INFORMS Annual Meeting 2020

${ }^{1}$ This research is partially supported by US Dept. of the Air Force grant FA9453-19-1-0078 and NSF grant DMS-1913006.

Problem Setting

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ using a first order method.

Problem Setting

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ using a first order method.

- $X \subset \mathbb{R}^{n}$ is closed, convex
- $K \in \mathbb{R}^{m \times n}$
- f and h are real-valued, convex functions

Problem Setting

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ using a first order method.

- $X \subset \mathbb{R}^{n}$ is closed, convex
- $K \in \mathbb{R}^{m \times n}$
- f and h are real-valued, convex functions

We further assume that

- ∇f is Lipschitz continuous with Lipschitz constant L
- X is easy to project to
- The proximal mapping problem involving $h(\cdot)$ is easy, i.e.

$$
\min _{w \in \mathbb{R}^{m}} h(w)+\frac{\rho}{2}\|w-z\|^{2}
$$

can be solved quickly.

Problem Setting

In algorithms to follow, it is sometimes useful to view (CO) as an affinely constrained optimization problem.

Affinely Convex Optimization

Equivalently, we rewrite (CO) as

$$
\begin{equation*}
F^{*}:=\min _{x \in X, z \in Z} f(x)+h(z) \text { s.t. } K x-b=z \text {. } \tag{ACO}
\end{equation*}
$$

Problem Setting

Convex Optimization

Our problem of interest is the minimization problem

$$
\begin{equation*}
F^{*}:=\min _{x \in X} f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

Examples of (CO) include

- $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}, f(x)=\sum_{i=1}^{N} 2 \log \left(1+\exp \left(-b_{(i)}\left(a_{i}^{T} x+y\right)\right)\right)$
- $h(x)=\lambda\|x\|_{p}, p=1,2$, or ∞
- $X=\{x \mid\|x\| \leq 1\}, X=\left\{x \mid \sum_{i} x_{i}=1, x \geq 0\right\}$

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
Two questions come to mind:

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
Two questions come to mind:

- How do we measure the efficiency of an algorithm?

Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
Two questions come to mind:

- How do we measure the efficiency of an algorithm?
- What does it mean to be "as quickly as possible"?

Oracle Complexity Theory

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
How do we measure the efficiency of an algorithm?

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
How do we measure the efficiency of an algorithm?

- define some oracle $\mathcal{O}: \mathbb{R}^{n} \rightarrow S$
- oracle complexity theory assumes a method \mathcal{M} accesses information only through querying \mathcal{O} during each iteration
- efficiency is measured by the number of times \mathcal{O} is queried by \mathcal{M}

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
How do we measure the efficiency of an algorithm?

- define some oracle $\mathcal{O}: \mathbb{R}^{n} \rightarrow S$
- oracle complexity theory assumes a method \mathcal{M} accesses information only through querying \mathcal{O} during each iteration
- efficiency is measured by the number of times \mathcal{O} is queried by \mathcal{M}

Example: Gradient Descent

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

can be evaluated under oracle $\mathcal{O}(x)=(f(x), \nabla f(x))$. It requires on the order of $1 / \varepsilon$ oracle queries to obtain an ε-solution.

Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
What does it mean to be "as quickly as possible"?

- define some oracle $\mathcal{O}: \mathbb{R}^{n} \rightarrow S$
- show the method matches the lower complexity bound of the corresponding oracle

Algorithm Optimality

What does it mean to be "as quickly as possible"?
upper complexity bound

punoq Kł! \times хә|duos ィәмо|

Algorithm Optimality

What does it mean to be "as quickly as possible"?

punoq Кұ!хә|duoว ィәмо|

Algorithm Optimality

What does it mean to be "as quickly as possible"?
punoq Kł!хә|duos дәмо|

Algorithm Optimality

What does it mean to be "as quickly as possible"?

Algorithm Optimality

What does it mean to be "as quickly as possible"?

Algorithm Optimality

What does it mean to be "as quickly as possible"?

Solving (CO)

Algorithm 1 Nesterov's accelerated gradient descent (NAGD)
Start: Choose $x_{0} \in X$. Set $\bar{x}_{0}:=x_{0}$
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \underline{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1}, \\
& x_{k}=\underset{u \in X}{\operatorname{argmin}}\left\langle\nabla f\left(\underline{x}_{k}\right), u\right\rangle+h(K u-b)+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2}, \\
& \bar{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k} .
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- reduces to gradient descent when $X=\mathbb{R}^{n}, h \equiv 0, \gamma_{k}=1$
- computes ε-solution in only $\mathcal{O}(\sqrt{L / \varepsilon})$ iterations
- is optimal for solving problems such as (CO) using oracle $\mathcal{O}(x)=(f(x), \nabla f(x))([1])$

Solving (CO)

Algorithm 2 Nesterov's accelerated gradient descent (NAGD)
Start: Choose $x_{0} \in X$. Set $\bar{x}_{0}:=x_{0}$
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \underline{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1}, \\
& x_{k}=\underset{u \in X}{\operatorname{argmin}}\left\langle\nabla f\left(\underline{x}_{k}\right), u\right\rangle+h(K u-b)+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2}, \\
& \bar{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k} .
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- reduces to gradient descent when $X=\mathbb{R}^{n}, h \equiv 0, \gamma_{k}=1$
- computes ε-solution in only $\mathcal{O}(\sqrt{L / \varepsilon})$ iterations
- is optimal for solving problems such as (CO) using oracle $\mathcal{O}(x)=(f(x), \nabla f(x))([1])$
- potentially problematic subproblem
- need another oracle to measure the ambiguity in subproblem difficulty

Solving (CO)

Algorithm 3 Nesterov's Smoothing Algorithm (NEST-S)

Start: Choose $x_{0} \in X$. Set $\bar{x}_{0}:=x_{0}$
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \underline{\mathrm{x}}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1}, \\
& y_{k}=\underset{v \in \mathbb{R}^{m}}{\operatorname{argmin}}-\left\langle K \underline{x}_{k}, v\right\rangle+h^{*}(v)+\frac{\rho}{2}\|v\|^{2}, \\
& x_{k}=\underset{u \in X}{\operatorname{argmin}}\left\langle\nabla f\left(\underline{x}_{k}\right)+K^{\top} y_{k}\right\rangle+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2}, \\
& \bar{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k} .
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- replaces nonsmooth h with smooth approximation
- subproblem becomes easy, but need to compute smooth approximation of h
- computes ε-solution in $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ oracle calls of $\mathcal{O}(x, y)=\left(\nabla f(x), K x, K^{\top} y\right)$

Solving (CO)

Algorithm 4 Alternating Direction Method of Multipliers (ADMM)

Start: Choose $x_{0} \in X$. Set $y_{0}:=0$ and $z_{0}:=K x_{0}$.
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& x_{k}=\underset{u \in X}{\operatorname{argmin}} f(u)+\left\langle y_{k-1}, K u-b-z_{k-1}\right\rangle+\frac{\eta_{k}}{2}\left\|K u-b-z_{k-1}\right\|^{2} \\
& z_{k}=\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}-\left\langle y_{k-1}, w\right\rangle+h(w)+\frac{\tau_{k}}{2}\left\|K x_{k}-w\right\|^{2}, \\
& y_{k}=y_{k-1}-\rho_{k}\left(K x_{k}-z_{k}\right) .
\end{aligned}
$$

end for
Output x_{N}.

- alternates updating primal and dual variables
- computes ε-solution in $\mathcal{O}((L+\|K\|) / \varepsilon)$ oracle calls of $\mathcal{O}(x, y)=\left(\nabla f(x), K x, K^{\top} y\right)$

Solving (CO)

Algorithm 5 Linearized Alternating Direction Method of Multipliers (L-ADMM)
Start: Choose $x_{0} \in X$. Set $y_{0}:=0$ and $z_{0}:=K x_{0}$.
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \left.x_{k}=\underset{u \in X}{\operatorname{argmin}}\left\langle\nabla f\left(x_{k}\right), u\right\rangle+K^{\top}\left(y_{k-1}+\theta_{k}\left(K x_{k-1}-z_{k-1}\right)\right), u\right\rangle+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2} \\
& z_{k}=\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}-\left\langle y_{k-1}, w\right\rangle+h(w)+\frac{\tau_{k}}{2}\left\|K x_{k}-w\right\|^{2}, \\
& y_{k}=y_{k-1}-\rho_{k}\left(K x_{k}-z_{k}\right) .
\end{aligned}
$$

end for
Output x_{N}.

- alternates updating primal and dual variables
- computes ε-solution in $\mathcal{O}((L+\|K\|) / \varepsilon)$ oracle calls of $\mathcal{O}(x, y)=\left(\nabla f(x), K x, K^{T} y\right)$
- introduces linearization for simpler x_{k} subproblems

Solving (CO)

Algorithm 6 Accelerated Alternating Direction Method of Multipliers (A-ADMM)
Start: Choose $x_{0} \in X$. Set $\bar{x}_{0}:=x_{0}, y_{0}:=0$, and $z_{0}:=K x_{0}$.
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \underline{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1}, \\
& \left.x_{k}=\underset{u \in X}{\operatorname{argmin}}\left\langle\nabla f\left(\underline{x}_{k}\right), u\right\rangle+K^{\top}\left(y_{k-1}+\theta_{k}\left(K x_{k-1}-z_{k-1}\right)\right), u\right\rangle+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2} \\
& z_{k}=\underset{w \in \mathbb{R}^{m}}{\operatorname{argmin}}-\left\langle y_{k-1}, w\right\rangle+h(w)+\frac{\tau_{k}}{2}\left\|K x_{k}-w\right\|^{2}, \\
& y_{k}=y_{k-1}-\rho_{k}\left(K x_{k}-z_{k}\right) . \\
& \bar{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k} .
\end{aligned}
$$

end for

Output \bar{x}_{N}.

- acceleration motivated by NAGD
- was shown in [2] that it computes ε-solution in $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ oracle calls of $\mathcal{O}(x, y)=\left(\nabla f(x), K x, K^{T} y\right)$

Improving the Oracle Idea

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
A few remarks:
(1) For oracle $\mathcal{O}(x)=\left(\nabla f(x), K x, K^{T} y\right)$, both A-ADMM and NEST-S only require $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ calls.
(2) In [3], it was shown that $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ is the lower complexity bound for problems of the form (CO) using oracle $\left(\nabla f(x), K x, K^{T} y\right)$.

Improving the Oracle Idea

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
A few remarks:
(1) For oracle $\mathcal{O}(x)=\left(\nabla f(x), K x, K^{\top} y\right)$, both A-ADMM and NEST-S only require $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ calls.
(2) In [3], it was shown that $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ is the lower complexity bound for problems of the form (CO) using oracle $\left(\nabla f(x), K x, K^{T} y\right)$.
We then make the following observations
(1) Whenever we simply count gradient evaluations, the problem can be solved in $\mathcal{O}(\sqrt{L / \varepsilon})$ calls.
(2) Whenever operator evaluations are involved, the number of calls increases to $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$.

Improving the Oracle Idea

Convex Optimization
Our problem of interest is computing an ε-solution \tilde{x} to

$$
\begin{equation*}
F^{*}:=\min _{x \in X} F(x):=f(x)+h(K x-b) \tag{CO}
\end{equation*}
$$

such that $F(\tilde{x})-F^{*}<\varepsilon$ as quickly as possible.
A few remarks:
(1) For oracle $\mathcal{O}(x)=\left(\nabla f(x), K x, K^{\top} y\right)$, both A-ADMM and NEST-S only require $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ calls.
(2) In [3], it was shown that $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ is the lower complexity bound for problems of the form (CO) using oracle ($\left.\nabla f(x), K x, K^{\top} y\right)$.
We then make the following observations
(1) Whenever we simply count gradient evaluations, the problem can be solved in $\mathcal{O}(\sqrt{L / \varepsilon})$ calls.
(2) Whenever operator evaluations are involved, the number of calls increases to $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$.
Perhaps there is an algorithm that keeps $\mathcal{O}(\sqrt{ } L / \varepsilon)$ gradient evaluations while still keeps the operator evaluations low.

Solving (CO) with Sliding

Algorithm 7 Gradient Sliding (GS)
Start: Choose $x_{0} \in X$. Set $\bar{x}_{0}:=x_{0}$
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \underline{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1}, \\
& x_{k}=\text { Subgradient }\left(\left\langle\nabla f\left(\underline{x}_{k}\right), u\right\rangle+h(K u-b)+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2}\right) \\
& \bar{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k} .
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- same as NAGD, but solves subproblem using subgradient method
- was shown in [4] that it computes ε-solution in only $\mathcal{O}(\sqrt{L / \varepsilon})$ gradient calls, but $\mathcal{O}\left(\sqrt{L / \varepsilon}+(\|K\| / \varepsilon)^{2}\right)$ operator calls

Solving (CO) with Sliding

Algorithm 8 Gradient Sliding (GS)
Start: Choose $x_{0} \in X$. Set $\bar{x}_{0}:=x_{0}$
for $k=1, \ldots, N$ do

$$
\begin{aligned}
& \underline{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1}, \\
& x_{k}=\text { Subgradient }\left(\left\langle\nabla f\left(\underline{x}_{k}\right), u\right\rangle+h(K u-b)+\frac{\eta_{k}}{2}\left\|u-x_{k-1}\right\|^{2}\right) \\
& \bar{x}_{k}=\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k} .
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- same as NAGD, but solves subproblem using subgradient method
- was shown in [4] that it computes ε-solution in only $\mathcal{O}(\sqrt{L / \varepsilon})$ gradient calls, but $\mathcal{O}\left(\sqrt{L / \varepsilon}+(\|K\| / \varepsilon)^{2}\right)$ operator calls
- improves gradient calls from A-ADMM and NEST-S, but increases operator calls

Solving (CO) with Sliding

Algorithm 9 Gradient sliding alternating direction method of multipliers (GS-ADMM)

$$
\begin{aligned}
& \text { Start: Choose } x_{0} \in X \text { and set } \bar{x}_{0}:=x_{0} \\
& \text { for } k=1, \ldots, N \text { do } \\
& \qquad \begin{aligned}
\underline{x}_{k} & =\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1} \\
\left(\tilde{x}_{k}, x_{k}, y_{k}, z_{k}\right) & =\operatorname{ApproxGS}\left(\nabla f\left(\underline{x}_{k}\right), x_{k-1}, y_{k-1}, z_{k-1}\right) \\
\bar{x}_{k} & =\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} \tilde{x}_{k}
\end{aligned}
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- here, the subproblem is approximately solved using a variant of L-ADMM (ApproxGS)
- computes ε-solution in only $\mathcal{O}(\sqrt{L / \varepsilon})$ gradient calls and $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ operator calls

Solving (CO) with Sliding

Algorithm 10 Gradient sliding alternating direction method of multipliers (GS-ADMM)

$$
\begin{aligned}
& \text { Start: Choose } x_{0} \in X \text { and set } \bar{x}_{0}:=x_{0} \\
& \text { for } k=1, \ldots, N \text { do } \\
& \qquad \begin{aligned}
\underline{x}_{k} & =\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} x_{k-1} \\
\left(\tilde{x}_{k}, x_{k}, y_{k}, z_{k}\right) & =\operatorname{ApproxGS}\left(\nabla f\left(\underline{x}_{k}\right), x_{k-1}, y_{k-1}, z_{k-1}\right) \\
\bar{x}_{k} & =\left(1-\gamma_{k}\right) \bar{x}_{k-1}+\gamma_{k} \tilde{x}_{k}
\end{aligned}
\end{aligned}
$$

end for
Output \bar{x}_{N}.

- here, the subproblem is approximately solved using a variant of L-ADMM (ApproxGS)
- computes ε-solution in only $\mathcal{O}(\sqrt{L / \varepsilon})$ gradient calls and $\mathcal{O}(\sqrt{L / \varepsilon}+\|K\| / \varepsilon)$ operator calls
- clear improvement from A-ADMM and NEST-S

Comparison of Algorithms

		$\begin{aligned} & 0 \\ & \vdots \\ & \gtrless \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\sim} \\ & \text { u } \end{aligned}$	\sum_{i}^{\sum}	\sum_{i}^{\sum}	ஸ	খ্ণ	$\sum_{i=1}^{\sum}$			
Gradient Evals	$\mathcal{O}\left(\frac{\sqrt{L}}{\epsilon}\right)$	X				X	X	X			
	$\mathcal{O}\left(\frac{L+\\|K\\|}{\epsilon}\right)$			X							
	$\mathcal{O}\left(\sqrt{\frac{L}{\epsilon}}+\frac{\\|K\\|}{\epsilon}\right)$		X		X				X		
Operator Evals	$\mathcal{O}\left(\sqrt{\frac{L}{\epsilon}}+\frac{\\|K\\|}{\epsilon}\right)$		X		X		X	X			
	$\mathcal{O}\left(\frac{L+\\|K\\|}{\epsilon}\right)$			X							
	$\mathcal{O}\left(\frac{L+\\|K\\|}{\epsilon^{2}}\right)$					X					
	$\mathcal{O}\left(\frac{\\|K\\|}{\epsilon}\right)$								X		

Numerical Example

Problem setting:

- motivated from worst-case instance in [3]

Numerical Example

Problem setting:

- motivated from worst-case instance in [3]
- $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}, h(x)=\lambda\|K x-b\|_{2}$

Numerical Example

Problem setting:

- motivated from worst-case instance in [3]
- $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}, h(x)=\lambda\|K x-b\|_{2}$
- sparse K, dense A

Numerical Example

Problem setting:

- motivated from worst-case instance in [3]
- $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}, h(x)=\lambda\|K x-b\|_{2}$
- sparse K, dense A

References

A. Nemirovski and D. Yudin.

Problem complexity and method efficiency in optimization.
Wiley-Interscience Series in Discrete Mathematics. John Wiley, XV, 1983.
國 Yuyuan Ouyang, Yunmei Chen, Guanghui Lan, and Jr. Eduardo Pasiliao.
An accelerated linearized alternating direction method of multipliers.
SIAM Journal on Imaging Sciences, 8(1):644-681, 2015.
直 Yuyuan Ouyang and Yangyang Xu.
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems.
Mathematical Programming, pages 1-35, 2019.
Ruanghui Lan.
Gradient sliding for composite optimization.
Mathematical Programming, 159(1-2):201-235, 2016.

