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Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε using a first order method.

X ⊂ Rn is closed, convex
K ∈ Rm×n

f and h are real-valued, convex functions

We further assume that

∇f is Lipschitz continuous with Lipschitz constant L
X is easy to project to
The proximal mapping problem involving h(·) is easy, i.e.

min
w∈Rm

h(w) +
ρ

2
‖w − z‖2

can be solved quickly.
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Problem Setting

In algorithms to follow, it is sometimes useful to view (CO) as an affinely constrained
optimization problem.

Affinely Convex Optimization

Equivalently, we rewrite (CO) as

F ∗ := min
x∈X ,z∈Z

f (x) + h(z) s.t. Kx − b = z . (ACO)
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Problem Setting

Convex Optimization

Our problem of interest is the minimization problem

F ∗ := min
x∈X

f (x) + h(Kx − b). (CO)

Examples of (CO) include

f (x) = 1
2 ||Ax − b||22 , f (x) =

∑N
i=1 2 log

(
1 + exp

(
−b(i)(aTi x + y)

))
h(x) = λ ||x ||p, p = 1, 2, or ∞
X = {x | ||x || ≤ 1},X = {x |

∑
i xi = 1, x ≥ 0}
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Problem Setting

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

Two questions come to mind:

How do we measure the efficiency of an algorithm?

What does it mean to be "as quickly as possible"?
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Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

How do we measure the efficiency of an algorithm?

define some oracle O : Rn → S

oracle complexity theory assumes a methodM accesses information only through
querying O during each iteration

efficiency is measured by the number of times O is queried byM
Example: Gradient Descent

xk+1 = xk − αk∇f (xk)

can be evaluated under oracle O(x) = (f (x),∇f (x)). It requires on the order of 1/ε
oracle queries to obtain an ε-solution.
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Lower Complexity Bound - a worst case problem instance

Smooth Convex

Subset 1

O(1/
√
ε)

Subset 2

O(log(1/ε))

O(1/
√
ε)
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Oracle Complexity Theory

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

What does it mean to be "as quickly as possible"?

define some oracle O : Rn → S

show the method matches the lower complexity bound of the corresponding oracle
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Algorithm Optimality

What does it mean to be "as quickly as possible"?

up
pe
r
co
m
pl
ex
ity

bo
un

d
low

er
com

plexity
bound

O(1/ε) (GD)

O(1/
√
ε) (NAGD)

O(log 1/ε)?

O(1/
√
ε)?
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Solving (CO)

Algorithm 1 Nesterov’s accelerated gradient descent (NAGD)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (xk), u〉+ h(Ku − b) +
ηk
2
‖u − xk−1‖2,

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output x̄N .

reduces to gradient descent when X = Rn, h ≡ 0, γk = 1
computes ε-solution in only O(

√
L/ε) iterations

is optimal for solving problems such as (CO) using oracle O(x) = (f (x),∇f (x)) ([1])

potentially problematic subproblem
need another oracle to measure the ambiguity in subproblem difficulty
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Solving (CO)

Algorithm 3 Nesterov’s Smoothing Algorithm (NEST-S)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

yk =argmin
v∈Rm

− 〈Kxk , v〉+ h∗(v) +
ρ

2
‖v‖2,

xk =argmin
u∈X

〈∇f (xk) + K>yk〉+
ηk
2
‖u − xk−1‖2,

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output x̄N .

replaces nonsmooth h with smooth approximation
subproblem becomes easy, but need to compute smooth approximation of h
computes ε-solution in O(

√
L/ε+ ||K || /ε) oracle calls of

O(x , y) = (∇f (x),Kx ,KT y)
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Solving (CO)

Algorithm 4 Alternating Direction Method of Multipliers (ADMM)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for k = 1, . . . ,N do

xk =argmin
u∈X

f (u) + 〈yk−1,Ku − b − zk−1〉+
ηk
2
||Ku − b − zk−1||2

zk =argmin
w∈Rm

− 〈yk−1,w〉+ h(w) +
τk
2
‖Kxk − w‖2,

yk =yk−1 − ρk(Kxk − zk).

end for
Output xN .

alternates updating primal and dual variables

computes ε-solution in O((L + ||K ||)/ε) oracle calls of O(x , y) = (∇f (x),Kx ,KT y)
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Solving (CO)

Algorithm 5 Linearized Alternating Direction Method of Multipliers (L-ADMM)

Start: Choose x0 ∈ X . Set y0 := 0 and z0 := Kx0.
for k = 1, . . . ,N do

xk =argmin
u∈X

〈∇f (xk), u〉+ K>(yk−1 + θk(Kxk−1 − zk−1)), u〉+
ηk
2
‖u − xk−1‖2

zk =argmin
w∈Rm

− 〈yk−1,w〉+ h(w) +
τk
2
‖Kxk − w‖2,

yk =yk−1 − ρk(Kxk − zk).

end for
Output xN .

alternates updating primal and dual variables

computes ε-solution in O((L + ||K ||)/ε) oracle calls of O(x , y) = (∇f (x),Kx ,KT y)

introduces linearization for simpler xk subproblems
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Solving (CO)

Algorithm 6 Accelerated Alternating Direction Method of Multipliers (A-ADMM)

Start: Choose x0 ∈ X . Set x0 := x0, y0 := 0, and z0 := Kx0.
for k = 1, . . . ,N do

xk =(1− γk)xk−1 + γkxk−1,

xk =argmin
u∈X

〈∇f (xk), u〉+ K>(yk−1 + θk(Kxk−1 − zk−1)), u〉+
ηk
2
‖u − xk−1‖2

zk =argmin
w∈Rm

− 〈yk−1,w〉+ h(w) +
τk
2
‖Kxk − w‖2,

yk =yk−1 − ρk(Kxk − zk).

xk =(1− γk)xk−1 + γkxk .

end for
Output xN .

acceleration motivated by NAGD
was shown in [2] that it computes ε-solution in O(

√
L/ε+ ||K || /ε) oracle calls of

O(x , y) = (∇f (x),Kx ,KT y)
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Improving the Oracle Idea

Convex Optimization

Our problem of interest is computing an ε-solution x̃ to

F ∗ := min
x∈X

F (x) := f (x) + h(Kx − b) (CO)

such that F (x̃)− F ∗ < ε as quickly as possible.

A few remarks:
1 For oracle O(x) = (∇f (x),Kx ,KT y), both A-ADMM and NEST-S only require
O(
√

L/ε+ ||K || /ε) calls.
2 In [3], it was shown that O(

√
L/ε+ ||K || /ε) is the lower complexity bound for

problems of the form (CO) using oracle (∇f (x),Kx ,KT y).

We then make the following observations
1 Whenever we simply count gradient evaluations, the problem can be solved in
O(
√

L/ε) calls.
2 Whenever operator evaluations are involved, the number of calls increases to
O(
√

L/ε+ ||K || /ε).

Perhaps there is an algorithm that keeps O(
√

L/ε) gradient evaluations while still keeps
the operator evaluations low.
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Solving (CO) with Sliding

Algorithm 7 Gradient Sliding (GS)

Start: Choose x0 ∈ X . Set x̄0 := x0

for k = 1, . . . ,N do

xk =(1− γk)x̄k−1 + γkxk−1,

xk =Subgradient(〈∇f (xk), u〉+ h(Ku − b) +
ηk
2
‖u − xk−1‖2)

x̄k =(1− γk)x̄k−1 + γkxk .

end for
Output xN .

same as NAGD, but solves subproblem using subgradient method

was shown in [4] that it computes ε-solution in only O(
√

L/ε) gradient calls, but
O(
√

L/ε+ (||K || /ε)2) operator calls

improves gradient calls from A-ADMM and NEST-S, but increases operator calls
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Solving (CO) with Sliding

Algorithm 9 Gradient sliding alternating direction method of multipliers (GS-ADMM)

Start: Choose x0 ∈ X and set x0 := x0

for k = 1, . . . ,N do

xk =(1− γk)xk−1 + γkxk−1

(x̃k , xk , yk , zk) =ApproxGS(∇f (xk), xk−1, yk−1, zk−1)

xk =(1− γk)xk−1 + γk x̃k

end for
Output xN .

here, the subproblem is approximately solved using a variant of L-ADMM
(ApproxGS)

computes ε-solution in only O(
√

L/ε) gradient calls and O(
√

L/ε+ ||K || /ε)
operator calls

clear improvement from A-ADMM and NEST-S
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Comparison of Algorithms
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Numerical Example

Problem setting:

motivated from worst-case instance in [3]

f (x) = 1
2 ||Ax − b||22 , h(x) = λ ||Kx − b||2

sparse K , dense A
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