
Interesting Problems Trevor Squires

Terence Tao suggests keeping track of mathematical tricks that are difficult or unnecessary
to remember. This note will blindly follow his advice. Below is a list of materials that I thought
useful to write down. These include arguments I needed to formalize, small tricks I encountered
during research, or even interesting problems suitable for a qualifying exam. I anticipate these
to be organized very poorly at first, perhaps improving as the list becomes larger.

1 Minimization Through Composition

Consider the Euclidean function. Despite being common in optimization, this function is neither
smooth nor strongly convex. For this reason, it would be natural to assume that minimizing
this norm via iterative methods would be a slowly converging process. However, if we instead
minimize f(x) = ||x||22, we have much more desirable properties. The function f is both
strongly convex and smooth and maintains the same minimizer as the Euclidean norm. This
was accomplished by composing our origin function with a monotonically increasing function.
Can we apply a similar process to other convex functions to obtain reformulations with better
properties? In this section, we explore smoothing convex functions through composition.

Let f : X → R be a continuous, convex function over a compact set X ⊂ Rn. For simplicity,
let us assume that f has a unique minimizer x∗. Our goal is to find a function g : R→ R such
that h(x) := (g ◦ f)(x) is a convex and differentiable over X with

x∗ := argmin
x∈X

f(x) = argmin
x∈X

h(x).

We know that to maintain the minimizer, we must enforce that g′(f(x0)) > 0 for any x0 ∈
X \ {x∗}. To study differentiability, we will utilize subdifferential sets. Recall that a convex
function has a nonempty subdifferential set at any point in its domain. Furthermore, f is
differentiable at x0 ∈ X if and only if the subdifferential of f at x0 is a singleton. Let x0 ∈ X.
From convex analysis, it can be shown that

∂h(x0) = {αβ | (α, β) ∈ ∂g(f(x0))× ∂f(x0)}.

We will proceed into two cases.
Assume that f is differentiable at x0 ∈ X. Then ∂f(x0) is a singleton. Thus, in order for

∂h(x0) to be a singleton, either g must be differentiable at f(x0) or ∇f(x0) = 0. Since we do
not want to assume knowledge of points satisfying ∇f(x0) = 0, we will instead enforce that g
be differentiable everywhere.

Now consider the case when f is non-differentiable at x0 ∈ Rn. Then |∂f(x0)| > 1. Thus,
in order for ∂h(x0) to be a singleton, we must have that g′(f(x0)) = 0.

To summarize, to ensure that h is differentiable over X, we must choose a differentiable
function g satisfying g′(f(x0)) = 0 for any point x0 ∈ X such that f is non-differentiable at
x0. However, in order for h be convex and have the same minimizer as f , we must also require
g′(f(x0)) > 0 for x0 ∈ X \ {x∗}. Here, we see the difficulties of choosing our function g. We
cannot create smoothness at x0 ∈ X unless x0 is itself the minimizer of f . This also explains
the previously noted phenomenon with the Eulcidean norm. g(x) = x2 is differentiable and
convex over the image of f(x) = ||x||22 and satisfies g′(f(x∗)) = g′(0) = 0. Unfortunately, for
most functions, this will not be the case. We leave the analysis of the (strong) convexity of h
to future study.

1



Interesting Problems Trevor Squires

2 On the Duality Between Smoothing and Catalyst Algorithms

A popular direction in current literature is to approximate an objective function f with a
separate function fµ parameterized by µ > 0 such that the minimizer of fµ is close to the
minimizer of f and fµ has additional optimization properties. These additional properties will
allow for accelerated methods to be used to minimize fµ which are not possible with f . If
the acceleration is large and the difference in minimizers is not, then minimizing fµ may be a
much better approach to finding an approximate minimizer for f . For example, if f is convex,
nonsmooth, then smoothing it lets us move from the subgradient error rate (O(1/

√
t)) to a

faster rate (O(1/t)). If f is smooth and convex but not strongly convex, then we may look
to for a strongly convex fµ to benefit from strongly convex methods. Here we show that the
two proposed ideas, smoothing and catalyst methods, are merely duals of each other. We will
heavily rely on convex conjugate theory - which we will briefly review.

For any function real valued function f , we define its convex conjugate via

f∗(y) = sup
x∈dom f

yTx− f(x).

Furthermore, if f is proper, lower semicontinuous and convex, then f satisfies the biconjugacy
property f = (f∗)∗. In this case, we can rewrite f as

f(x) = sup
y∈dom f∗

xT y − f∗(y).

The functions f and f∗ are related in many ways. One that will be of importance to us is the
following.

Theorem. Let f : Rn → R be a proper, continuous, closed, convex function. Then f is strongly
convex with strong convexity parameter µ > 0, if and only if f∗ is differentiable with Lipschitz
continuous gradient and Lipschitz constant 1/µ.

In short, under ideal conditions, the strong convexity of f or f∗ implies the smoothness
of the other and vice versa. This suggests a duality relationship between smoothing methods
and catalyst methods. By catalyzing (i.e. to make strongly convex) the convex conjugate, we
construct a smooth approximation to the original function. By smoothing the convex conjugate,
we construct a strongly convex approximation to the original function.

We can use this duality relationship to more easily understand popular algorithms such
as Nesterov’s smoothing technique. By the above theorem, if we want to construct a smooth
approximation fµ to f , then it suffices to catalyze f∗. Using the standard catalyst approach,
we can construct a strongly convex approximation to f∗ via

f∗µ(y) = f∗(y) + µd(y) = sup
x∈dom f

yTx− f(x) + µd(y)

where d : Rn → R is a strongly convex prox function. Taking the convex conjugate again to
get back fµ from the biconjugacy property, we obtain

fµ(x) = sup
y∈dom f∗

xT y − f∗µ(y) = sup
y∈dom f∗

xT y − f∗(y)− µd(y)

which is precisely Nesterov’s smoothing technique. This suggests another method of construct-
ing catalyst/smoothing algorithms. For any given catalyst algorithm, simply applying it to the
convex conjugate of a sufficiently nice function f will result in a smoothing algorithm for f .
We can use this idea to construct another catalyst technique via Moreau-Yosida smoothing.
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3 CndG Step Size

The procedure CndG is listed in [1] is as follows

procedure u+ = CndG(g, u, β, η)

1. Set u1 = u and t = 1.

2. Let vt be the optimal solution for the subproblem of

Vg,u,β(ut) := max
x∈X
〈g + β(ut − u), ut − x〉. (3.1)

3. If Vg,u,β(ut) ≤ η, set u+ = ut and terminate.

4. Set ut+1 = (1−αt)ut +αtvt where αt = min {1, 〈β(u− ut)− g, vt − ut〉/(β ||vt − ut||2)}.
5. Set t← t+ 1 and go to step 2.

end procedure

This procedure can be viewed as the classical algorithm which minimizes a linear objective
at each step applied to the function φ(x) = 〈g, x〉+ β ||x− u||2 /2. For instance, the maximizer
of (3.1) is equivalent to the minimizer of 〈φ′(ut), x〉. The termination criteria is whenever
Vg,u,β(ut) is smaller than the tolerance η. The stepsize optimal step size αt is then the solution
to

αt = argmin
α∈[0,1]

φ((1− α)ut + αvt). (3.2)

We will show that αt = min {1, 〈β(u− ut)− g, vt − ut〉/(β ||vt − ut||2)}.

Proof. We use the KKT conditions to solve (3.2). Let us introduce dual variables µ1 and µ2 to
deal with the constraints α ≤ 1 and 0 ≤ α respectively. Our conditions are as follows:

• Primal Feasibility:
0 ≤ α ≤ 1

• Dual Feasibility

〈(vt − ut), (g + β((1− α)ut + αvt − u))〉+ µ1 − µ2 = 0

and
µ1, µ2 ≥ 0

• Complementary Slackness

µ1(α− 1) = 0, and µ2α = 0.

With 2 dual variables, we have 4 cases. For µ1 6= 0 and µ2 6= 0, we yield no solution since
both α = 0 and α = 1 must hold. For µ1 = 0 and µ2 6= 0, we must have α = 0 and µ2 =
〈(vt−ut), (g+β(ut−u))〉. But by the definition of vt, we know that 〈φ′(ut), vt〉 ≤ 〈φ′(ut), ut)〉.
Thus, µ2 = 〈vt − ut, φ′(ut)〉 < 0 since µ2 6= 0. Since this contradicts dual feasibility, this case
gives no solutions.
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For µ1 6= 0 and µ2 = 0, we have α = 1 and µ1 = 〈(ut − vt), (g + β(ut − u))〉. By a similar
argument, it can be shown that µ1 ≥ 0. Thus, α = 1 is a solution if 〈(ut−vt), (g+β(ut−u))〉 6= 0.
Finally, whenever µ1 = µ2 = 0, α must satisfy

〈vt − ut, g + β((1− α)ut + αvt − u))〉 = 0.

Splitting the LHS into two inner products, it follows that

αβ ||vt − ut||2 + 〈β(ut − u) + g, vt − ut〉 = 0

and thus α = 〈β(u− ut)− g, vt − ut〉/(β ||vt − ut||2). Note that by our previous discussion, the
numerator is always positive and consequently α ≥ 0.

In summary, there are two possible KKT points. If

〈β(u− ut)− g, vt − ut〉/(β ||vt − ut||2) ∈ [0, 1],

i.e. if it is less than 1, then this is our solution. Otherwise, since the solution exists and is
unique, it must be that αt = 1. We can summarize this result as αt = min {1, 〈β(u − ut) −
g, vt − ut〉/(β ||vt − ut||2)}.
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