MATH 8610 (SPRING 2018) FINAL EXAM

Assigned 05/03/2019 at 12pm, due 05/06 at 10am. Late submission not accepted.

1. [Q1] Let $A \in \mathbb{R}^{n \times n}$ be real symmetric, indefinite and nonsingular. Consider a signed Cholesky factorization $A=L D L^{T}$, where L is lower triangular, and D is a diagonal matrix with ± 1 diagonal elements. Consider a collection of such matrices, for which $\kappa_{2}(L) \leq C_{n}$ for some moderate constant $C_{n}>0$ (assume n is fixed).
(a) Show that for these matrices, the Cholesky factor L satisfies $\|L\|_{2} \leq \sqrt{C_{n}\|A\|_{2}}$.
(b) Suppose a signed Cholesky factorization applied to these matrices gives \widehat{L}, and diagonal \widehat{D} with ± 1 entries, such that $A+\Delta A=\widehat{L} \widehat{D} \widehat{L}^{T}$, with $\kappa_{2}(\widehat{L}) \leq C_{n}$, and $\frac{\|\Delta A\|_{2}}{\|\widehat{L}\|_{2}\left\|\widehat{L}^{T}\right\|_{2}}=\mathcal{O}\left(\epsilon_{\text {mach }}\right)$. Show this algorithm is backward stable for such matrices.
(Hint: left and right multiply $A=L D L^{T}$ by L^{-1} and L, respectively, note that D is orthogonal, and find an upper bound on $\left\|L^{T} L\right\|_{2}$; also need $\|L\|_{2}\left\|L^{T}\right\|_{2}=\left\|L^{T} L\right\|_{2}$)
2. [Q2] Let $A \in \mathbb{R}^{m \times n}(m \geq n)$ be of full rank n, with SVD $A=\sum_{j=1}^{n} \sigma_{j} u_{j} v_{j}^{T}$, with singular values $\sigma_{1} \geq \sigma_{2} \geq \ldots \sigma_{n}>0$. Choose and fix index $k(1 \leq k<n)$, define $A_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{T}+\sum_{j=k+1}^{n} \frac{\sigma_{k+1}}{2} u_{j} v_{j}^{T}$, and consider $S=\left\{B: B \in \mathbb{R}^{m \times n}, \sigma_{j}(B)=\right.$ $\left.\frac{\sigma_{k+1}}{2}, k+1 \leq j \leq n\right\}$ (similarly, assuming that $\left.\sigma_{1}(B) \geq \ldots \geq \sigma_{n}(B)\right)$. Show that

$$
\left\|A-A_{k}\right\|_{2}=\inf _{B \in S}\|A-B\|_{2}
$$

(Hint: Note that $\|A w\| \leq\|B w\|+\|(A-B) w\|$, assume that there exists a minimizer $B \neq A_{k}$, and let w lie in a subspace spanned by certain right singular vectors)
3. [Q3] Consider the unshifted QR iteration applied to a real symmetric tridiagonal matrix H, described by $Q^{(k)} R^{(k)}=H^{(k-1)}$ and $H^{(k)}=R^{(k)} Q^{(k)}$, with $H^{(0)}=H$. Define $\underline{Q}^{(k)}=Q^{(1)} \cdots Q^{(k)}$ and $\underline{R}^{(k)}=R^{(k)} \cdots R^{(1)}$.
(a) Is the arithmetic work of each QR iteration $\mathcal{O}(n), \mathcal{O}\left(n^{2}\right)$, or $\mathcal{O}\left(n^{3}\right)$, and why?
(b) With $H^{k}=\underline{Q}^{(k)} \underline{R}^{(k)}$, show that under certain mild assumptions, the first and the last column of $\underline{Q}^{(k)}$ converge to the eigenvector of H associated with the largest and the smallest (modulus) eigenvalues, respectively.
(c) Now consider the shifted QR iteration. Assume that the bottom-right 3×3 block of $H^{(k)}$ is $\left[\begin{array}{ccc}\times & \eta a & \\ \eta a & a+b & \delta \\ & \delta & b\end{array}\right]$, with $|\delta|$ sufficiently small, $|a|$ not very small, and $\eta \neq 0$. Assume that the shift $\mu^{(k+1)}=b$ is used to transform $H^{(k)}$ to $H^{(k+1)}$. Give an upper bound on the $(n, n-1)$ entry of $H^{(k+1)}$ in modulus. What does this imply?
4. [Q4] Consider the Arnoldi relation $A U_{k}=U_{k+1} \underline{H}_{k}$, with $U_{k}^{T} U_{k}=I, \underline{H}_{k} \in \mathbb{R}^{(k+1) \times k}$. Let (μ, w) be an eigenpair of H_{k} (the top k rows of \underline{H}_{k}).
(a) Show that $\left(\mu, U_{k} w\right)$ satisfies $A U_{k} w-\mu U_{k} w \perp \mathcal{K}_{k}\left(A, u_{1}\right)$, and $\left\|A U_{k} w-\mu U_{k} w\right\|_{2}=$ $\left|h_{k+1, k} w(k)\right|$, where $w(k)$ is the last element of w.
(b) What happens if $\operatorname{col}\left(U_{k}\right)$ is an invariant subspace of A, i.e., $\operatorname{col}\left(A U_{k}\right) \subset \operatorname{col}\left(U_{k}\right)$? Under what condition(s) for u_{1} would this scenario happen?
5. [Q5] Let $r_{0}=b-A x_{0}$ be the initial residual vector of the linear system $A x=b$, and $r_{k}=r_{0}-A z_{k}$ with $z_{k} \in \mathcal{K}_{k}\left(A, r_{0}\right)$.
(a) Show that $p_{k} \perp A \mathcal{K}_{k}\left(A, r_{0}\right)$ for CG, and $r_{k} \perp A \mathcal{K}_{k}\left(A, r_{0}\right)$ for GMRES. As a result, show that $\left(r_{j}, p_{k}\right)=\left(r_{k}, p_{k}\right)$ for CG, and $\left(r_{j}, r_{k}\right)=\left(r_{k}, r_{k}\right)$ for GMRES $(1 \leq j<k)$.
(b) Let $A U_{k}=U_{k+1} \underline{H}_{k}$ be the Lanczos/Arnoldi relation for solving $A x=b$, where $u_{1}=\frac{r_{0}}{\left\|r_{0}\right\|_{2}}$. Let the k-th iterate of CG or GMRES be $x_{k}=x_{0}+U_{k} y_{k}$. Show that $H_{k} y_{k}=\left\|r_{0}\right\|_{2} e_{1}$ for CG, whereas $\underline{H}_{k}^{T} \underline{H}_{k} y_{k}=\left\|r_{0}\right\|_{2} \underline{H}_{k}^{T} e_{1}$ for GMRES.
(Hint: for GMRES, consider the normal equation for the linear least squares)
6. [Q6] Let $A \in \mathbb{R}^{n \times n}$ be real symmetric, indefinite and nonsingular. Consider using the MINRES algorithm to solve the linear system $A x=b$ iteratively. Assume that the eigenvalues of A all lie in the intervals $[-a,-b] \cup[c, d]$, with $-a<-b<0<c<d$, and $a-b=d-c$ (two intervals are of the same length). Let $r_{0}=b-A x_{0}$ and $r_{2 k}=b-A x_{2 k}$ be the initial and the $2 k$-th residual of MINRES. Show that

$$
\frac{\left\|r_{2 k}\right\|_{2}}{\left\|r_{0}\right\|_{2}} \leq 2\left(\frac{\sqrt{a d}-\sqrt{b c}}{\sqrt{a d}+\sqrt{b c}}\right)^{k}
$$

What does this bound suggest if A has a large 2-condition number?
(Hint: let $q_{2}(t)=2 \frac{(t+b)(t-c)}{b c-a d}+1, p_{2 k}(t)=\frac{T_{k}\left(q_{2}(t)\right)}{T_{k}\left(q_{2}(0)\right)}$; show that $q_{2}(-a)=q_{2}(d)=-1$, $q_{2}(-b)=q_{2}(c)=1$, and recall that MINRES is mathematically GMRES)

