
MATH 8600 (FALL 2018) HOMEWORK 7

Assigned 11/19/18, due 11/29/18 in class.

Instructor: Dr. Fei Xue, Martin O-203, fxue@clemson.edu.

1. [Q1] Suppose that the degree of accuracy of a quadrature rule with n + 1 nodes is
m, and all wk > 0. Then for f ∈ Cm+1([a, b]), the error of the quadrature satisfies∣∣∣∣ ∫ b

a

f(x)dx−Q(f)

∣∣∣∣ ≤ m+ 3

2m+1(m+ 2)!
max
c∈[a,b]

∣∣f (m+1)(c)
∣∣(b− a)m+2.

(Hint: consider the Taylor expansion of f(x) at a+b
2 , a polynomial of degree m plus

a remainder of order m + 1. Then
∫ b
a
f(x)dx − Q(f) is the difference between the

integral and the quadrature of the remainder, bounded by the sum of the two. Also,∑n
k=0 |wk| =

∑n
k=0 wk = b − a. Here, we have a desirable additional factor 2m+1

compared to the result mentioned in class, due to the expansion at the midpoint.)

2. [Q2∗] Assume that a quadrature rule has both positive and negative weights, denoted
by wk with k ∈ S+ ⊂ {0, 1, . . . , n} and k ∈ S− = {0, 1, . . . , n} \ S+, respectively.
Suppose that the largest positive and negative (in absolute value) weights both go
to infinity as n → ∞. For any given δ > 0 (small) and M > 0 (large), show that
there exist n, and f, g ∈ C[a, b] with ‖f − g‖∞ ≤ δ, such that |Q(f) − Q(g)| ≥ M .
Comment on the importance of the positiveness of quadrature weights.

3. [Q3] (a) Use the 2nd order Taylor expansion of f(x) at a+b
2 to show that the error

of the midpoint rule is
∫ b
a
f(x)dx−Q(f) = (b−a)3

24 f ′′(c) for some c ∈ (a, b).

(b) Let p1(x) be the linear interpolant of f(x) at x0 = a and x1 = b. Use the error

f(x)− p1(x) to show that the error of the trapezoidal rule is − (b−a)3
12 f ′′(c).

4. [Q4∗] (a) Prob 15.4(a) (Hint: use the error of Hermite interpolation)

(b) The order of precision of Simpson’s rule is m = 3, because it has 3 nodes (n = 2),
x1 = a+b

2 is the midpoint, and x0 and x2 are symmetric with respect to x1 (see
notes). Let p(x) be the Hermite interpolation of the integrand f(x), interpolating
(a, f(a)),

(
a+b
2 , f

(
a+b
2

))
,
(
a+b
2 , f ′

(
a+b
2

))
, and (b, f(b)). What is the relation between∫ b

a
p(x)dx and the quadrature Q(p)? Use the error formula for f(x)−p(x) to find the

error of the Simpson’s rule and compare with the one on textbook p. 445.

5. [Q5] (a) Derive the Simpson’s rule by hand (take 3 equispaced nodes on [a, b], and

evaluate wk =
∫ b
a
Lk(x)dx). Then, use symbolic math software (such as Mathematica

or www.wolframalpha.com) to verify the Boole’s rule.

(b) Use the uploaded code newtoncotes.m to compute the Newton-Cotes quadra-

ture of
∫ 1

−1
dx

5x4+4x3+3x2+2x+1 , using up to 21 equispaced nodes, and compare with
the integral value I(f) = 1.615636766490166. Do Newton-Cotes rules give accurate

result? What if we use these rules to approximate
∫ −1
−3

dx
5x4+4x3+3x2+2x+1? Explain

your observations. Should we try Newton-Cotes of higher order if the results are not
satisfactory? (Refer to [Q2] and Lagrange interpolation based on equispaced nodes)

1

2

6. [Q6] (a) By hand and with MATLAB as a calculator, use the composite trapezoidal

and Simpson’s rules to approximate
∫ 1.5

−1.5
dx

5x4+4x3+3x2+2x+1 , with ` = 6 subintervals.
Please show detailed expressions of both quantities and the values of each term.

(b) Prob 15.6(a) (compare with the composite corrected rules given in class).

7. [Q7] (a) Write MATLAB code for the composite trapezoid (uncorrected & corrected),

Simpson’s, and Boole’s rules to approximate the integral in [Q5](b),
∫ 1

0

√
xdx = 2

3 ,

and 1
2π

∫ 2π

0

√
1− 0.36 sin2 xdx = 0.9027799277721939. Take ` = 32, 64, 128, 256 and

512 equispaced subintervals, and find |I(f) −Q(f)| for each ` and each quadrature.
How much does the error decrease when ` is doubled for each quadrature, and why?

(b) Perform the Romberg quadrature, making the Romberg table with ` = 512 equi-
spaced subintervals (no more subdivisions).

8. [Q8∗] Derive the 3-point Gauss-Legendre quadrature for
∫ 1

−1 f(x)dx, and the 2-point

Gauss-Chebyshev quadrature for
∫ 1

−1
f(x)√
1−x2

dx. Please follow the order of precision

of Gauss quadratures, and use the symmetry of [−1, 1] and the weight function w(x).

9. [Q9] (a) Consider the Clenshaw-Curtis quadrature. The original quadrature nodes
{xi}ni=0 on [−1, 1] are the Chebyshev points cos

(
iπ
n

)
. For even n, we have

wi =

{
1

n2−1 i = 0 or n
2
n

[
1−

{∑n/2−1
k=1

2
4k2−1 cos

(
2ikπ
n

)}
− (−1)i

n2−1

]
1 ≤ i ≤ n− 1

and for odd n ≥ 3, the formulas are

wi =

{
1
n2 i = 0 or n
2
n

[
1−

{∑(n−1)/2
k=1

2
4k2−1 cos

(
2ikπ
n

)}]
1 ≤ i ≤ n− 1

Give the 3-node and 4-node Clenshaw-Curtis quadrature rules for
∫ b
a
f(x)dx. Then

use them to approximate
∫ 0.29

0.19
e−5x sin 1

x sin 1
sin 1

x

dx = 0.02115910278025609.

(b) Consider the Gauss quadrature with 4 (n = 3) nodes. Use the three-term recur-
rence formula of the Legendre polynomials φn+1(x) = 2n+1

n+1 xφn(x)− n
n+1φn−1(x) to

derive the expression of φ4(x), and use MATLAB’s roots function to find the quadra-

ture nodes numerically. Then, compute the weights wi =
2(1−x2

i)
[(n+1)φn(xi)]2

(0 ≤ i ≤ n)

on MATLAB. Use this Gauss quadrature to approximate the integral in part (a).

10. [Q10∗] Prob 11.9 (derive a difficult 2-node weighted Gauss quadrature).

11. [Q11] (a) To construct a composite Gauss quadrature rule of order 20, how many
nodes are needed on each subinterval? Use the uploaded gausslg to compute the
nodes and weights of the corresponding (original) Gauss quadrature on [−1, 1], and
then write MATLAB code for this composite quadrature. By trial and error, find how
many equispaced subintervals and total number of quadrature nodes are needed to

approximate

∫ 0.3182

0.1593

e−5x sin
1

x
sin

1

sin 1
x

dx = 0.02561655631847027 to full precision.

3

(b) Run the uploaded HW7 quadcomp to compare MATLAB’s integral, composite
Simpson’s rule, classical (eigenvalue-based) and fast Gauss quadrature, fast Clenshaw-
Curtis quadrature (FFT-based), and the application of these rules on three subinter-
vals (f(x) changes mildly on the middle subinterval but rapidly elsewhere).

To get accurate timing, close all other applications, use a for loop repeating the code
100 times and take the average time for each quadrature rule.

Report the number of nodes and the average time for each quadrature algorithm, and
draw some conclusions (including the possible reuse of quadrature nodes as n doubles
for Clenshaw-Curtis, even though this is not explored here).

