MATH 8600 (FALL 2018) HOMEWORK 6

Assigned $11 / 01 / 18$, due $11 / 13 / 18$ in class.
Instructor: Dr. Fei Xue, Martin O-203, fxue@clemson.edu.
Q1-7 Textbook Problems 10.4(a), 10.6, 10.7, 10.13, 10.21, 11.3, 11.5, 11.8.
Q8 Show that the Lagrange basis polynomials satisfy $\sum_{i=0}^{n} L_{i}(x) \equiv 1$ for all x. (Hint: consider the polynomial interpolation for $f(x) \equiv 1$ at $x_{0}, x_{1}, \ldots, x_{n}$; is $f(x)$ itself a polynomial of degree $\leq n$ going through these data points?)

Q9 (a) Consider $f(x)=e^{-5 x} \sin \frac{1}{x} \sin \frac{1}{\sin \frac{1}{x}}$ on $[a, b]=[0.17,0.31]$. Use $121(n=120)$ equidistant interpolation points $x_{0}, x_{1}, \ldots, x_{n}$ on $[a, b]$, where $x_{0}=a$ and $x_{n}=b$, and construct the Lagrange interpolation $p_{n}(x)$ in the type- 1 barycentric formula. To see whether $p_{n}(x) \approx f(x)$, take $m=1024$ random evaluation points $\left\{s_{k}\right\}_{k=1}^{m}$ uniformly distributed on $[0.19,0.29]$, evaluate $p_{n}(x)$ and $f(x)$ at $\left\{s_{k}\right\}$ and compute $\left\|\left[f\left(s_{1}\right)-p_{n}\left(s_{1}\right), \ldots, f\left(s_{m}\right)-p_{n}\left(s_{m}\right)\right]\right\|_{\infty}$. Then, let $\left\{s_{k}\right\}$ be uniformly distributed on [$0.185,0.295]$ and on $[0.17,0.31]$, respectively, and repeat. Make comments.
(b) Use Chebyshev interpolation points $x_{k}=-\cos \left(\frac{k \pi}{n}\right) \frac{b-a}{2}+\frac{b+a}{2}$ and type-2 barycentric formula, generate $m=1024$ uniformly distributed evaluation points $\left\{s_{k}\right\}_{k=1}^{m}$ on $[a, b]$, repeat the experiments in part (a).
(c) Let $[a, b]=[0.1596,0.3175]$, and take 16384 random uniformly distributed evaluation points $\left\{s_{k}\right\}$ on $[a, b]$. Evaluate $\left\|f\left(\left\{s_{k}\right\}\right)-p_{n}\left(\left\{s_{k}\right\}\right)\right\|_{\infty}$ for $n=600,800,900,1000$, and 1100, using type-2 barycentric formula.
(d) For the test in part (c), how efficiently would the classical Lagrange formula $p_{n}(x)=\sum_{i=0}^{n} y_{i} L_{i}(x)$ or the type- 1 barycentric formula $p_{n}(x)=L(x) \sum_{i=0}^{n} \frac{\mu_{i} y_{i}}{x-x_{i}}$ work? You may test and time them. (Hint: the arithmetic cost for each formula?)

