MATH 8600 (FALL 2018) HOMEWORK 6

Assigned 11/01/18, due 11/13/18 in class.

Instructor: Dr. Fei Xue, Martin O-203, fxue@clemson.edu.

- Q1-7 Textbook Problems 10.4(a), 10.6, 10.7, 10.13, 10.21, 11.3, 11.5, 11.8.
 - Q8 Show that the Lagrange basis polynomials satisfy $\sum_{i=0}^{n} L_i(x) \equiv 1$ for all x. (Hint: consider the polynomial interpolation for $f(x) \equiv 1$ at x_0, x_1, \ldots, x_n ; is f(x) itself a polynomial of degree $\leq n$ going through these data points?)
 - Q9 (a) Consider $f(x) = e^{-5x} \sin \frac{1}{x} \sin \frac{1}{\sin \frac{1}{x}}$ on [a,b] = [0.17,0.31]. Use 121 (n=120) equidistant interpolation points x_0, x_1, \ldots, x_n on [a,b], where $x_0 = a$ and $x_n = b$, and construct the Lagrange interpolation $p_n(x)$ in the type-1 barycentric formula. To see whether $p_n(x) \approx f(x)$, take m=1024 random evaluation points $\{s_k\}_{k=1}^m$ uniformly distributed on [0.19,0.29], evaluate $p_n(x)$ and f(x) at $\{s_k\}$ and compute $\|[f(s_1)-p_n(s_1),\ldots,f(s_m)-p_n(s_m)]\|_{\infty}$. Then, let $\{s_k\}$ be uniformly distributed on [0.185,0.295] and on [0.17,0.31], respectively, and repeat. Make comments.
 - (b) Use Chebyshev interpolation points $x_k = -\cos\left(\frac{k\pi}{n}\right)\frac{b-a}{2} + \frac{b+a}{2}$ and type-2 barycentric formula, generate m = 1024 uniformly distributed evaluation points $\{s_k\}_{k=1}^m$ on [a,b], repeat the experiments in part (a).
 - (c) Let [a, b] = [0.1596, 0.3175], and take 16384 random uniformly distributed evaluation points $\{s_k\}$ on [a, b]. Evaluate $||f(\{s_k\}) p_n(\{s_k\})||_{\infty}$ for n = 600, 800, 900, 1000, and 1100, using type-2 barycentric formula.
 - (d) For the test in part (c), how efficiently would the classical Lagrange formula $p_n(x) = \sum_{i=0}^n y_i L_i(x)$ or the type-1 barycentric formula $p_n(x) = L(x) \sum_{i=0}^n \frac{\mu_i y_i}{x x_i}$ work? You may test and time them. (Hint: the arithmetic cost for each formula?)