## MATH 8600 (FALL 2018) HOMEWORK 5

Instructor: Dr. Fei Xue, Martin O-203, fxue@clemson.edu.
Assigned 10/23/2018, due 10/30/2018 in class.

1. Prob 8.3, Prob 8.6 (a)(b) (Prob 8.6(b) is probably challenging)
(Prob 8.6(b) hint: first, let $(\lambda, v)$ be an eigenvector of a column-stochastic matrix $P$, then show that if the sum of all entries of $v$ is nonzero, then $\lambda=1$; then, assume that $\|v\|_{2}=1$, and show that $v^{*} P$ is a row vector whose entries are all no greater than $\|v\|_{2}=1$ in modulus (need Cauchy-Schwarz inequality and note that the 2-norm of each column of $P$ is no greater than 1 ), so that $\left|v^{*} P v\right|=|\lambda| \leq 1$ )
2. Suppose that $X \in \mathbb{R}^{n \times p}(2 \leq p \ll n)$ contains column vectors that are all linear combinations of a particular set of $p$ eigenvectors of $A \in \mathbb{R}^{n \times n}$. Show that the eigenvalues of the block Rayleigh quotient $M=\left(X^{*} X\right)^{-1}\left(X^{*} A X\right)$ are the eigenvalues of $A$ corresponding to these eigenvectors. (Hint: let $X=\left[v_{1}, \ldots, v_{p}\right] Z$ where $Z$ is a nonsingular matrix of order $p$ )
3. Develop MATLAB code for subspace iteration and shift-invert subspace iteration. Use them to compute the dominant 11 dominant eigenvalues and the 9 eigenvalues closest to $\sigma=-0.1$. Use tolerance $10^{-10}$ for the relative eigenresidual norm. Plot the relative eigenresidual norm against the iteration number, and compare the computed eigenvalues with the results obtained by using MATLAB's eigs function.
