MATH 8600 (FALL 2018) HOMEWORK 4

Instructor: Dr. Fei Xue, Martin O-203, fxue@clemson.edu.
Assigned $10 / 12 / 2018$, due $10 / 22 / 2018$ by 5 pm in my office.

1. Prob 5.22, 5.23, 5.24, 6.4, 6.5, 6.6(b)

Note that for $6.4(\mathrm{~b})$, please add one column of data: $i=4, t_{i}=3.0$ and $z_{i}=e^{\pi}$. Also, some of you might have $v(t)=x_{1}+x_{1} t$, where the second x_{1} should be x_{2}.
2. Write a MATLAB QR code using modified Gram-Schmidt orthogonalization discussed in class. Calculate the number of floating point operations needed (assuming $A \in \mathbb{R}^{n \times m}$ is fully dense), and test it on two matrices

A1 $=\operatorname{rand}(10000,45) ;$
and
A = fliplr(vander (linspace $(-1,1,10000)))$;
$\mathrm{A} 2=\mathrm{A}(:, 1: 25) ; \mathrm{A} 3=\mathrm{A}(:, 1: 45)$;
Check the 2-condition number of $A_{i},\left\|Q^{T} Q-I\right\|_{2}$ and $\left\|Q R-A_{i}\right\|_{2} /\left\|A_{i}\right\|_{2}$, for each of the three matrices, respectively. Draw conclusions from the numerical results.

