
Math 8110 (Spring 2019) Homework 5 Trevor Squires

1. Consider the conjugate direction methods:

αk = −
rTk pk

pT
kApk

,

rk = Axk − b,

xk+1 = xk + αkpk.

For any starting point x0 ∈ Rn, prove that xk is the global minimizer of f(x) = 1
2x

TAx−
bx over x0 + span{p0,p1, . . . ,pk−1}. (Hint: consider h(c) := f(x0 + c0p0 + c1p1 + · · ·+
ck−1pk−1).)

Solution. Define P =
[
p0 . . . pk−1

]
and cT =

[
c0 . . . ck−1

]
. Consider the function

h(c) = f(x0 + Pc). Taking gradient with respect to c, we see that

∇h(c) = P T∇f(x0 + Pc)

Letting ci = αi as constructed in the conjugate direction method, we see that

∇h(c) = P T∇f(xk)

Recall that ∇f(xk) = Axk − b = rk. Then,

∇h(c) = P T rk = 0

Since h is a convex function, our choice of c as in the conjugate direction algorithm is a
global minimizer of h. Thus, xk minimizes f over x0 + span{p0, . . . , pk−1}.

2. Use the KKT conditions to solve the following constrained optimization problem:

min x1x2

S.t. x21 + x22 ≤ 1

Solution. Note first that x and y are symmetric. That is, each solution listed below is
actually a pair of solutions. The KKT conditions for the optimization are

x21 + x22 ≤ 1[
x2
x1

]
+ 2µ

[
x1
x2

]
= 0

µ(1− x21 − x22) = 0

The case µ = 0 admits the solution x = (0, 0). The case µ 6= 0 leaves (x, µ) =

(
√
2
2 ,−

√
2
2 ,−

1
2) and (

√
2
2 ,
√
2
2 ,

1
2). Comparing the two solutions, it follows that x = (

√
2
2 ,−

√
2
2 )

is the optimal solution (up to symmetry).

3. Consider the following minimization problem:

min f(x) (P)

S.t. x ∈ S
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where
S := { x ∈ X | gi(x) ≤ 0, i = 1, . . . ,m } ,

X is a nonempty open set in Rn and f : Rn → R and gi : Rn → R, i = 1, . . . ,m are
differentiable functions. Let x̄ be a feasible point and let I := { i | gi(x̄) = 0 } be the
index set of active constraints at x̄. Define

F0 := {d ∈ Rn | ∇f(x̄)Td < 0 } and G′0 := {d ∈ Rn \ {0} | ∇gi(x̄)Td ≤ 0, i ∈ I }

as in class. Prove that x̄ is a KKT point if and only if F0 ∩G′0 = ∅. (Hint: Apply Farkas’
Lemma.)

Proof. Let x̄ be a feasible point with F0 ∩ G′0 = ∅ and I be the set of active inequality
constraints. It follows that, ∇f(x̄)Td < 0 and ∇gi(x̄)Tdi ≤ 0 for all i ∈ I is not solvable.
Since this system has no solution, ∃w ≥ 0 such that the system defined by∇f(x̄)Td+w ≤ 0
and ∇gi(x̄)Tdi ≤ 0 for all i ∈ I also has no solution. That is, the following has no solution

[
∇f(x̄)T 0 1

0 ∇gI(x̄)T 0

] ddI
w

 ≤ 0,
[
0 0 1

]  ddI
w

 ≥ 0

Applying Farkas’s Lemma, it follows that the system

AT y =

∇f(x̄) 0
0 ∇gI(x̄)T

1 0

[ y
yI

]
=

0
0
1

 = c

has a solution. That is,

∇f(x̄)T +
∑
i∈I

yi∇gi(x̄)T = 0

with yi ≥ 0 for all i ∈ I. Thus, x̄ satisfies the dual feasibility of the KKT conditions. The
complementary slackness conditions are satisfied trivially. So x̄ is a KKT point.

4. Suppose that linearity constraint qualification is satisfied for problem (P). Prove that if
x̄ is a locally optimal solution, then x̄ is a KKT point.

Proof. Define the following sets

F0 := {d ∈ Rn : ∇f(x̄)Td < 0}
D := {d 6= 0 : x̄ + λd ∈ S∀λ ∈ (0, δ) for some δ > 0}
G′0 := {d ∈ Rn\{0} : ∇gi(x̄)Td ≤ 0,∀i ∈ I}

Since x̄ is a local optimal solution and f is differentiable at x̄, by Theorem 1 it follows that
F0 ∩D = ∅. Since each gi is affine, they must be concave. Thus, by lemma 2, G′0 = D.
So F0 ∩ G′0 = ∅ and x̄ is a KKT point follows from the equivalent conditions proved in
question 3.
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5. Consider problem (P) and assume that X = Rn. In general, solving a KKT system is
not an easy task. However, given a primal solution x̄, it is easy to check whether x̄ is a
KKT point. Given the fact that a linear program is easy to solve, explain how to check
whether x̄ is a KKT point.

Solution. Given a primal solution, to determine if x̄ is a KKT point, it suffices to find
a solution µ such that µ satisfies complementary slackness and dual feasibility. Any
feasbility problem, as the one constructed here, can be modeled as the optimization
problem

min 0

S.t. µi∇gI(x̄) = 0

∇f(x̄) +
∑
i∈I

µi∇gi(x̄) = 0

µ ≥ 0

Since the program is linear in the decision variables µi, determining if x̄ is a KKT point
is a simple as solving a linear program, which is easy.

6. Check whether x̄ = (1, 2, 5)T is a KKT point of

min 2x21 + x22 + 2x23 + x1x3 − x1x2 + x1 + 2x3

S.t. x21 + x22 − x3 ≤ 0

x1 + x2 + 2x3 ≤ 16

x1 + x2 ≥ 3

x1, x2, x3 ≥ 0.

Solution. Since the first and last constraints are active at x̄, to determine if x̄ is a KKT
point, it suffices to check whether or not

∇f(x̄) + µ1∇g1(x̄) + µ3∇g3(x̄) = 0

has a solution with µ1, µ3 ≥ 0. That is, we need to check if

8 + 2µ1 − µ3 = 0

3 + 4µ1 − µ3 = 0

23− µ1 = 0

has a solution, and it does not.
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