1. Consider the conjugate direction methods:

$$
\begin{aligned}
\alpha_{k} & =-\frac{\mathbf{r}_{k}^{T} \mathbf{p}_{k}}{\mathbf{p}_{k}^{T} A \mathbf{p}_{k}}, \\
\mathbf{r}_{k} & =A \mathbf{x}_{k}-\mathbf{b} \\
\mathbf{x}_{k+1} & =\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} .
\end{aligned}
$$

For any starting point $\mathbf{x}_{0} \in \mathbb{R}^{n}$, prove that \mathbf{x}_{k} is the global minimizer of $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} A \mathbf{x}-$ $\mathbf{b x}$ over $\mathbf{x}_{0}+\operatorname{span}\left\{\mathbf{p}_{0}, \mathbf{p}_{1}, \ldots, \mathbf{p}_{k-1}\right\}$. (Hint: consider $h(\mathbf{c}):=f\left(\mathbf{x}_{0}+c_{0} \mathbf{p}_{0}+c_{1} \mathbf{p}_{1}+\cdots+\right.$ $\left.c_{k-1} \mathbf{p}_{k-1}\right)$.)
Solution. Define $P=\left[\begin{array}{lll}p_{0} & \ldots & p_{k-1}\end{array}\right]$ and $c^{T}=\left[\begin{array}{lll}c_{0} & \ldots & c_{k-1}\end{array}\right]$. Consider the function $h(c)=f\left(x_{0}+P c\right)$. Taking gradient with respect to c, we see that

$$
\nabla h(c)=P^{T} \nabla f\left(x_{0}+P c\right)
$$

Letting $c_{i}=\alpha_{i}$ as constructed in the conjugate direction method, we see that

$$
\nabla h(c)=P^{T} \nabla f\left(x_{k}\right)
$$

Recall that $\nabla f\left(x_{k}\right)=A x_{k}-b=r_{k}$. Then,

$$
\nabla h(c)=P^{T} r_{k}=0
$$

Since h is a convex function, our choice of c as in the conjugate direction algorithm is a global minimizer of h. Thus, x_{k} minimizes f over $x_{0}+\operatorname{span}\left\{p_{0}, \ldots, p_{k-1}\right\}$.
2. Use the KKT conditions to solve the following constrained optimization problem:

$$
\begin{aligned}
\min & x_{1} x_{2} \\
\text { S.t. } & x_{1}^{2}+x_{2}^{2} \leq 1
\end{aligned}
$$

Solution. Note first that x and y are symmetric. That is, each solution listed below is actually a pair of solutions. The KKT conditions for the optimization are

$$
\begin{aligned}
x_{1}^{2}+x_{2}^{2} & \leq 1 \\
{\left[\begin{array}{l}
x_{2} \\
x_{1}
\end{array}\right]+2 \mu\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =0 \\
\mu\left(1-x_{1}^{2}-x_{2}^{2}\right) & =0
\end{aligned}
$$

The case $\mu=0$ admits the solution $x=(0,0)$. The case $\mu \neq 0$ leaves $(x, \mu)=$ $\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2},-\frac{1}{2}\right)$ and $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}\right)$. Comparing the two solutions, it follows that $x=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ is the optimal solution (up to symmetry).
3. Consider the following minimization problem:

$$
\begin{array}{cl}
\min & f(\mathbf{x}) \tag{P}\\
\text { S.t. } & \mathbf{x} \in S
\end{array}
$$

where

$$
S:=\left\{\mathbf{x} \in X \mid g_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m\right\}
$$

X is a nonempty open set in \mathbb{R}^{n} and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1, \ldots, m$ are differentiable functions. Let $\overline{\mathbf{x}}$ be a feasible point and let $I:=\left\{i \mid g_{i}(\overline{\mathbf{x}})=0\right\}$ be the index set of active constraints at $\overline{\mathbf{x}}$. Define

$$
F_{0}:=\left\{\mathbf{d} \in \mathbb{R}^{n} \mid \nabla f(\overline{\mathbf{x}})^{T} \mathbf{d}<0\right\} \text { and } G_{0}^{\prime}:=\left\{\mathbf{d} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} \mid \nabla g_{i}(\overline{\mathbf{x}})^{T} \mathbf{d} \leq 0, i \in I\right\}
$$

as in class. Prove that $\overline{\mathbf{x}}$ is a KKT point if and only if $F_{0} \cap G_{0}^{\prime}=\emptyset$. (Hint: Apply Farkas' Lemma.)

Proof. Let $\overline{\mathbf{x}}$ be a feasible point with $F_{0} \cap G_{0}^{\prime}=\emptyset$ and I be the set of active inequality constraints. It follows that, $\nabla f(\overline{\mathbf{x}})^{T} d<0$ and $\nabla g_{i}(\overline{\mathbf{x}})^{T} d_{i} \leq 0$ for all $i \in I$ is not solvable. Since this system has no solution, $\exists w \geq 0$ such that the system defined by $\nabla f(\overline{\mathbf{x}})^{T} d+w \leq 0$ and $\nabla g_{i}(\overline{\mathbf{x}})^{T} d_{i} \leq 0$ for all $i \in I$ also has no solution. That is, the following has no solution

$$
\left[\begin{array}{ccc}
\nabla f(\overline{\mathbf{x}})^{T} & 0 & 1 \\
0 & \nabla g_{I}(\overline{\mathbf{x}})^{T} & 0
\end{array}\right]\left[\begin{array}{c}
d \\
d_{I} \\
w
\end{array}\right] \leq 0,\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
d \\
d_{I} \\
w
\end{array}\right] \geq 0
$$

Applying Farkas's Lemma, it follows that the system

$$
A^{T} y=\left[\begin{array}{cc}
\nabla f(\overline{\mathbf{x}}) & 0 \\
0 & \nabla g_{I}(\overline{\mathbf{x}})^{T} \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
y \\
y_{I}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=c
$$

has a solution. That is,

$$
\nabla f(\overline{\mathbf{x}})^{T}+\sum_{i \in I} y_{i} \nabla g_{i}(\overline{\mathbf{x}})^{T}=0
$$

with $y_{i} \geq 0$ for all $i \in I$. Thus, $\overline{\mathbf{x}}$ satisfies the dual feasibility of the KKT conditions. The complementary slackness conditions are satisfied trivially. So $\overline{\mathbf{x}}$ is a KKT point.
4. Suppose that linearity constraint qualification is satisfied for problem (P). Prove that if $\overline{\mathbf{x}}$ is a locally optimal solution, then $\overline{\mathbf{x}}$ is a KKT point.

Proof. Define the following sets

$$
\begin{aligned}
F_{0} & :=\left\{d \in \mathbb{R}^{n}: \nabla f(\overline{\mathbf{x}})^{T} d<0\right\} \\
D & :=\{d \neq 0: \overline{\mathbf{x}}+\lambda d \in S \forall \lambda \in(0, \delta) \text { for some } \delta>0\} \\
G_{0}^{\prime} & :=\left\{d \in \mathbb{R}^{n} \backslash\{0\}: \nabla g_{i}(\overline{\mathbf{x}})^{T} d \leq 0, \forall i \in I\right\}
\end{aligned}
$$

Since $\overline{\mathbf{x}}$ is a local optimal solution and f is differentiable at $\overline{\mathbf{x}}$, by Theorem 1 it follows that $F_{0} \cap D=\emptyset$. Since each g_{i} is affine, they must be concave. Thus, by lemma $2, G_{0}^{\prime}=D$. So $F_{0} \cap G_{0}^{\prime}=\emptyset$ and $\overline{\mathbf{x}}$ is a KKT point follows from the equivalent conditions proved in question 3.
5. Consider problem (P) and assume that $X=\mathbb{R}^{n}$. In general, solving a KKT system is not an easy task. However, given a primal solution $\overline{\mathbf{x}}$, it is easy to check whether $\overline{\mathbf{x}}$ is a KKT point. Given the fact that a linear program is easy to solve, explain how to check whether $\overline{\mathbf{x}}$ is a KKT point.

Solution. Given a primal solution, to determine if $\overline{\mathbf{x}}$ is a KKT point, it suffices to find a solution μ such that μ satisfies complementary slackness and dual feasibility. Any feasbility problem, as the one constructed here, can be modeled as the optimization problem

$$
\begin{array}{ll}
\min & 0 \\
\text { S.t. } & \mu_{i} \nabla g_{I}(\overline{\mathbf{x}})=0 \\
& \nabla f(\overline{\mathbf{x}})+\sum_{i \in I} \mu_{i} \nabla g_{i}(\overline{\mathbf{x}})=0 \\
& \mu \geq 0
\end{array}
$$

Since the program is linear in the decision variables μ_{i}, determining if $\overline{\mathbf{x}}$ is a KKT point is a simple as solving a linear program, which is easy.
6. Check whether $\overline{\mathbf{x}}=(1,2,5)^{T}$ is a KKT point of

$$
\begin{array}{cl}
\min & 2 x_{1}^{2}+x_{2}^{2}+2 x_{3}^{2}+x_{1} x_{3}-x_{1} x_{2}+x_{1}+2 x_{3} \\
\text { S.t. } & x_{1}^{2}+x_{2}^{2}-x_{3} \leq 0 \\
& x_{1}+x_{2}+2 x_{3} \leq 16 \\
& x_{1}+x_{2} \quad \geq 3 \\
& x_{1}, x_{2}, x_{3} \geq 0 .
\end{array}
$$

Solution. Since the first and last constraints are active at $\overline{\mathbf{x}}$, to determine if $\overline{\mathbf{x}}$ is a KKT point, it suffices to check whether or not

$$
\nabla f(\overline{\mathbf{x}})+\mu_{1} \nabla g_{1}(\overline{\mathbf{x}})+\mu_{3} \nabla g_{3}(\overline{\mathbf{x}})=0
$$

has a solution with $\mu_{1}, \mu_{3} \geq 0$. That is, we need to check if

$$
\begin{aligned}
8+2 \mu_{1}-\mu_{3} & =0 \\
3+4 \mu_{1}-\mu_{3} & =0 \\
23-\mu_{1} & =0
\end{aligned}
$$

has a solution, and it does not.

