1. Implement the steepest descent method with Armijo's backtracking strategy. See HW4Q1.m for input and output information. In fact, HW4Q1 applies your algorithm to the Rosenbrock function:

$$
f(\mathbf{x})=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

What do you observe from the output?

Solution. The Rosenbrock function exhibits a zig-zag convergence. Each acceptable α found by Armijo's backtracking strategy is very small, around 0.02 . The convergence is definitely linear as shown via the graphs in HW4Q1.m, but it converges nonetheless. Instead of solving for the minimum of $f(\mathbf{x})$, however, it is possible to minimize $f(T \mathbf{x})$ in hopes of faster convergence and then simply converting the new solution to the minimizer of the Rosenbrock by $x \leftarrow T x$. The Rosenbrock function is so slow that the first randomly generated matrix T outperformed the original function. Letting $T=\left[\begin{array}{cc}3.57 & -1.34 \\ 2.76 & 3.03\end{array}\right]$ gives convergence in only 5813 iterations which is roughly a third of the original iterations needed.
2. Implement the Newton's method. Apply it to the Rosenbrock function. What do you observe?

Solution. Newton's method provides a quadratically converging algorithm under convergence assumptions. In a conjugate gradient-like sequence of iterations, Newton's method converged in only 2 iterations. This is certainly much faster than the aforementioned GD approach, but did require Hessian computations.
3. Suppose that we apply Newton's method to the 1-dimensional problem

$$
\min f(x):=t x-\ln x
$$

where $t>0$ is a parameter. For this specific example, show that Newton's method, with starting point x_{0}, converges quadratically if $\left|x_{0}-x^{*}\right|<\frac{1}{t}$ and does not converge if $\left|x_{0}-x^{*}\right| \geq \frac{1}{t}$.

Proof. First note that since $f^{\prime \prime}(x)=\frac{1}{x^{2}} \geq 0, f$ is convex. Since $f^{\prime}\left(\frac{1}{t}\right)=t-t=0, x^{*}=\frac{1}{t}$ must be the global minimizer of f. Consider the absolute backward error at step $k+1$, $e_{k+1}=\left|x_{k+1}-x^{*}\right|$. Using the Newton method update, this is simply

$$
\begin{aligned}
e_{k+1} & =\left|x_{k+1}-x^{*}\right| \\
& =\left|x_{k}-x^{*}-x_{k}^{2}\left(t-\frac{1}{x_{k}}\right)\right| \\
& =\left|2 x_{k}-x^{*}-t x_{k}^{2}\right| \\
& =t\left|t x_{k}^{2}-\frac{2 x_{k}}{t}-\frac{1}{t^{2}}\right| \\
& =t\left|x_{k}-x^{*}\right|^{2} \\
& =t e_{k}^{2}
\end{aligned}
$$

Using this recurrence relation, the following holds true

$$
t e_{k+1}=\left(t e_{k}\right)^{2}=\cdots=\left(t e_{0}\right)^{2^{k+1}}
$$

Thus, when $e_{0}<\frac{1}{t}$, Newton's method applied to f will converge quadratically, and when $e_{0} \geq \frac{1}{t}$, it will not converge at all.
4. As discussed in class, steepest descent, Newton, and quasi-Newton methods can be unified in the form of

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} B_{k} \nabla f\left(\mathbf{x}_{k}\right)
$$

In this question, we derive the rate of convergence of such a method on a convex quadratic function

$$
f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}-\mathbf{b}^{T} \mathbf{x}
$$

where $Q \succ 0$.
(a) Compute the step size α_{k} assuming that exact line search is used.

Solution. Solving for α_{k} via exact line search is equivalent to the minimization problem $\min f\left(x_{k}-\lambda d\right)$ where d is the direction chosen. For this setting, this simplifies to solving

$$
\alpha_{k}=\operatorname{argmin} f\left(x_{k}-\lambda B_{k} \nabla f\left(x_{k}\right)\right)
$$

Since this is convex optimization, this is instead solving $\theta(\lambda):=\nabla f\left(x_{k}-\lambda B_{k} \nabla f\left(x_{k}\right)\right)=$ $\left(B_{k} \nabla f\left(x_{k}\right)\right)^{T} \nabla f\left(x_{k}-\lambda B_{k} \nabla f\left(x_{k}\right)\right)=0$. Noting that $\nabla f\left(x_{k}\right)=Q x_{k}-b$, it follows that

$$
\begin{aligned}
\left(B_{k} \nabla f\left(x_{k}\right)\right)^{T} \nabla f\left(x_{k}-\lambda B_{k} \nabla f\left(x_{k}\right)\right) & =0 \\
\left(B_{k} \nabla f\left(x_{k}\right)\right)^{T}\left[Q\left(x_{k}-\lambda B_{k} \nabla f\left(x_{k}\right)\right)-b\right] & =0 \\
\left(B_{k} \nabla f\left(x_{k}\right)\right)^{T}\left[Q\left(x_{k}\right)-b\right] & =\lambda \nabla f\left(x_{k}\right)^{T} B_{k}^{T} Q B_{k} \nabla f\left(x_{k}\right)
\end{aligned}
$$

Thus,

$$
\alpha_{k}=\frac{\left(B_{k} \nabla f\left(x_{k}\right)\right)^{T} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{T} B_{k}^{T} Q B_{k} \nabla f\left(x_{k}\right)}
$$

is the optimal step size.
(b) Let \mathbf{x}^{*} be the unique minimizer of f, and define $E(\mathbf{x}):=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} Q\left(\mathbf{x}-\mathbf{x}^{*}\right)$. Prove that

$$
E\left(\mathbf{x}_{k+1}\right) \leq\left(\frac{A_{k}-a_{k}}{A_{k}+a_{k}}\right)^{2} E\left(\mathbf{x}_{k}\right)
$$

where A_{k} and a_{k} are the largest and smallest eigenvalues of $B_{k} Q$, respectively.

Proof. It should be noted that the proof is nearly identical to that of the notes. The result and proof are only slightly modified. For brevity, let $A_{k}=B_{k} \nabla f\left(x_{k}\right)$. By expansion of
$E\left(x_{k+1}\right)$ and definition of α_{k},

$$
\begin{aligned}
E(k+1) & =\frac{1}{2}\left(x_{k+1}-x^{*}\right)^{T} Q\left(x_{k+1}-x^{*}\right) \\
& =\frac{1}{2}\left(x_{k}-\alpha_{k} A_{k}-x^{*}\right)^{T} Q\left(x_{k}-\alpha_{k} A_{k}-x^{*}\right) \\
& =\frac{1}{2}\left(\left(x_{k}-x^{*}\right)^{T} Q\left(x_{k}-x^{*}\right)+\alpha_{k}^{2}\left(A_{k}^{T} Q A_{k}\right)\right)-\left(\alpha_{k} A_{k}\right)^{T} Q\left(x_{k}-x^{*}\right) \\
& =-\frac{1}{2} \frac{A_{k}^{T} A_{k}}{A_{k}^{T} Q A_{k}}
\end{aligned}
$$

Also not unlike the notes, it follows from definition of f that $x_{k}-x^{*}=Q^{-1} \nabla f\left(x_{k}\right)$ and therefore $E\left(x_{k}\right)=\frac{1}{2} \nabla f\left(x_{k}\right)^{T} Q^{-1} \nabla f\left(x_{k}\right)$. Thus,

$$
E\left(x_{k+1}\right)=E\left(x_{k}\right)\left(1-\frac{\nabla f\left(x_{k}\right)^{T}\left(B_{k}^{\frac{1}{2}}\right)^{T} B_{k}^{\frac{1}{2}} \nabla f\left(x_{k}\right)}{\nabla f\left(x_{k}\right)^{T} B_{k}^{T} Q B_{k} \nabla f\left(x_{k}\right)\left(\nabla f\left(x_{k}\right)^{T} Q^{-1} \nabla f\left(x_{k}\right)\right.}\right)
$$

Setting $x=\nabla f\left(x_{k}\right)^{T} B_{k}^{\frac{1}{2}}$, we have

$$
E\left(x_{k+1}\right)=E\left(x_{k}\right)\left(1-\frac{x^{T} x}{\left(x^{T} B_{k}^{\frac{1}{2}} Q B_{k}^{\frac{1}{2}} x\right)\left(x^{T} B_{k}^{-\frac{1}{2}} Q^{-1} B_{k}^{-\frac{1}{2}} x\right)}\right)
$$

Thus, Kantorovich's inequality gives us

$$
E\left(x_{k+1}\right) \leq E\left(x_{k}\right)\left(1-\frac{4 \lambda_{1} \lambda_{n}}{\left(\lambda_{1}+\lambda_{n}\right)^{2}}\right)=E\left(x_{k}\right)\left(\frac{\lambda_{n}-\lambda_{1}}{\lambda_{n}+\lambda_{1}}\right)^{2}
$$

where λ_{1}, λ_{n} are the largest and smallest eigenvalues of $B_{k}^{\frac{1}{2}} Q B_{k}^{\frac{1}{2}}$. Denote this matrix A. Since $B_{k}^{\frac{1}{2}} A B_{k}^{-\frac{1}{2}}=B_{k} Q$, the matrices A and $B_{k} Q$ are similar, and thus have the same eigenvalues. The statement follows immediately.
5. In the DFP method,

$$
B_{k+1}=\left(I_{n}-\frac{\mathbf{y}_{k} \mathbf{s}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) B_{k}\left(I_{n}-\frac{\mathbf{s}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right)+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}} .
$$

Prove that if $B_{k} \succ 0$ and $\mathbf{y}_{k}^{T} \mathbf{s}_{k}>0$, then $B_{k+1} \succ 0$.
Proof. Consider the quantity $x^{T} B_{k+1} x$. By the DFP method, this is simply

$$
x^{T} B_{k+1} x=x^{T}\left(I_{n}-\frac{\mathbf{y}_{k} \mathbf{s}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) B_{k}\left(I_{n}-\frac{\mathbf{s}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) x+x^{T}\left(\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) x
$$

Set $A=\left(I_{n}-\frac{\mathbf{y}_{\mathbf{k}} \mathbf{s}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right)$ and consider the first term. Since $A^{T}=\left(I_{n}-\frac{\mathbf{s}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right)$, the first term is $x^{T} A B_{k} A^{T} x=y^{T} B_{k} y$ where $y=A^{T} x$. Since $B_{k} \succ 0, y^{T} B_{k} y \geq 0$. For the second term, note that

$$
x^{T}\left(\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) x=\left(\frac{x^{T} \mathbf{y}_{k} \mathbf{y}_{k}^{T} x}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right)=\left(\frac{\left\|\mathbf{y}_{k}^{T} x\right\|^{2}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) \geq 0
$$

since $y_{k}^{T} s_{k} \geq 0$. Thus,

$$
x^{T}\left(I_{n}-\frac{\mathbf{y}_{k} \mathbf{s}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) B_{k}\left(I_{n}-\frac{\mathbf{s}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) x+x^{T}\left(\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{y}_{k}^{T} \mathbf{s}_{k}}\right) x \geq 0
$$

for all x and so $B_{k+1} \succ 0$.

