
Math 8110 (Spring 2019) Homework 4 Trevor Squires

1. Implement the steepest descent method with Armijo’s backtracking strategy. See HW4Q1.m
for input and output information. In fact, HW4Q1 applies your algorithm to the Rosen-
brock function:

f(x) = 100(x2 − x21)2 + (1− x1)2.

What do you observe from the output?

Solution. The Rosenbrock function exhibits a zig-zag convergence. Each acceptable α
found by Armijo’s backtracking strategy is very small, around 0.02. The convergence
is definitely linear as shown via the graphs in HW4Q1.m, but it converges nonethe-
less. Instead of solving for the minimum of f(x), however, it is possible to minimize
f(Tx) in hopes of faster convergence and then simply converting the new solution to
the minimizer of the Rosenbrock by x ← Tx. The Rosenbrock function is so slow that
the first randomly generated matrix T outperformed the original function. Letting

T =

[
3.57 −1.34
2.76 3.03

]
gives convergence in only 5813 iterations which is roughly a third of

the original iterations needed.

2. Implement the Newton’s method. Apply it to the Rosenbrock function. What do you
observe?

Solution. Newton’s method provides a quadratically converging algorithm under conver-
gence assumptions. In a conjugate gradient-like sequence of iterations, Newton’s method
converged in only 2 iterations. This is certainly much faster than the aforementioned GD
approach, but did require Hessian computations.

3. Suppose that we apply Newton’s method to the 1-dimensional problem

min f(x) := tx− lnx,

where t > 0 is a parameter. For this specific example, show that Newton’s method,
with starting point x0, converges quadratically if |x0 − x∗| < 1

t and does not converge if
|x0 − x∗| ≥ 1

t .

Proof. First note that since f ′′(x) = 1
x2 ≥ 0, f is convex. Since f ′(1t ) = t− t = 0, x∗ = 1

t
must be the global minimizer of f . Consider the absolute backward error at step k + 1,
ek+1 = |xk+1 − x∗|. Using the Newton method update, this is simply

ek+1 = |xk+1 − x∗|

= |xk − x∗ − x2k(t− 1

xk
)|

= |2xk − x∗ − tx2k|

= t|tx2k −
2xk
t
− 1

t2
|

= t|xk − x∗|2

= te2k
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Using this recurrence relation, the following holds true

tek+1 = (tek)2 = · · · = (te0)
2k+1

Thus, when e0 <
1
t , Newton’s method applied to f will converge quadratically, and when

e0 ≥ 1
t , it will not converge at all.

4. As discussed in class, steepest descent, Newton, and quasi-Newton methods can be unified
in the form of

xk+1 = xk − αkBk∇f(xk).

In this question, we derive the rate of convergence of such a method on a convex quadratic
function

f(x) =
1

2
xTQx− bTx,

where Q � 0.

(a) Compute the step size αk assuming that exact line search is used.

Solution. Solving for αk via exact line search is equivalent to the minimization prob-
lem min f(xk − λd) where d is the direction chosen. For this setting, this simplifies
to solving

αk = argmin f(xk − λBk∇f(xk))

Since this is convex optimization, this is instead solving θ(λ) := ∇f(xk−λBk∇f(xk)) =
(Bk∇f(xk))T∇f(xk − λBk∇f(xk)) = 0. Noting that ∇f(xk) = Qxk − b, it follows
that

(Bk∇f(xk))T∇f(xk − λBk∇f(xk)) = 0

(Bk∇f(xk))T [Q(xk − λBk∇f(xk))− b] = 0

(Bk∇f(xk))T [Q(xk)− b] = λ∇f(xk)TBT
k QBk∇f(xk)

Thus,

αk =
(Bk∇f(xk))T∇f(xk)

∇f(xk)TBT
k QBk∇f(xk)

is the optimal step size.

(b) Let x∗ be the unique minimizer of f , and define E(x) := 1
2(x−x∗)TQ(x−x∗). Prove

that

E(xk+1) ≤
(
Ak − ak
Ak + ak

)2

E(xk),

where Ak and ak are the largest and smallest eigenvalues of BkQ, respectively.

Proof. It should be noted that the proof is nearly identical to that of the notes. The result
and proof are only slightly modified. For brevity, let Ak = Bk∇f(xk). By expansion of
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E(xk+1) and definition of αk,

E(k+1) =
1

2
(xk+1 − x∗)TQ(xk+1 − x∗)

=
1

2
(xk − αkAk − x∗)TQ(xk − αkAk − x∗)

=
1

2

(
(xk − x∗)TQ(xk − x∗) + α2

k(AT
kQAk)

)
− (αkAk)TQ(xk − x∗)

= −1

2

AT
kAk

AT
kQAk

Also not unlike the notes, it follows from definition of f that xk − x∗ = Q−1∇f(xk) and
therefore E(xk) = 1

2∇f(xk)TQ−1∇f(xk). Thus,

E(xk+1) = E(xk)

1−
∇f(xk)T (B

1
2
k )TB

1
2
k∇f(xk)

∇f(xk)TBT
k QBk∇f(xk)(∇f(xk)TQ−1∇f(xk)



Setting x = ∇f(xk)TB
1
2
k , we have

E(xk+1) = E(xk)

1− xTx

(xTB
1
2
k QB

1
2
k x)(xTB

− 1
2

k Q−1B
− 1

2
k x)


Thus, Kantorovich’s inequality gives us

E(xk+1) ≤ E(xk)(1− 4λ1λn
(λ1 + λn)2

) = E(xk)

(
λn − λ1
λn + λ1

)2

where λ1, λn are the largest and smallest eigenvalues of B
1
2
k QB

1
2
k . Denote this matrix A.

Since B
1
2
k AB

− 1
2

k = BkQ, the matrices A and BkQ are similar, and thus have the same
eigenvalues. The statement follows immediately.

5. In the DFP method,

Bk+1 =

(
In −

yks
T
k

yT
k sk

)
Bk

(
In −

sky
T
k

yT
k sk

)
+

yky
T
k

yT
k sk

.

Prove that if Bk � 0 and yT
k sk > 0, then Bk+1 � 0.

Proof. Consider the quantity xTBk+1x. By the DFP method, this is simply

xTBk+1x = xT
(
In −

yks
T
k

yT
k sk

)
Bk

(
In −

sky
T
k

yT
k sk

)
x+ xT

(
yky

T
k

yT
k sk

)
x
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Set A =
(
In −

yks
T
k

yT
k sk

)
and consider the first term. Since AT =

(
In −

sky
T
k

yT
k sk

)
, the first term

is xTABkA
Tx = yTBky where y = ATx. Since Bk � 0, yTBky ≥ 0. For the second term,

note that

xT
(
yky

T
k

yT
k sk

)
x =

(
xTyky

T
k x

yT
k sk

)
=

(
‖yT

k x‖2

yT
k sk

)
≥ 0

since yTk sk ≥ 0. Thus,

xT
(
In −

yks
T
k

yT
k sk

)
Bk

(
In −

sky
T
k

yT
k sk

)
x+ xT

(
yky

T
k

yT
k sk

)
x ≥ 0

for all x and so Bk+1 � 0.
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