
Math 8110 (Spring 2019) Homework 2 Trevor Squires

1. Let A be an m × n matrix and c ∈ Rn. Prove that exactly one of the following two
systems has a solution:

• Ax ≤ 0,x ≥ 0, cTx > 0

• ATy ≥ c,y ≥ 0

Proof. We will prove this by a series of equivalences. Let us begin with the second system.

It is equivalent to
[
A −I

]T [y
s

]
= c, y ≥ 0, s ≥ 0. By Farkas lemma, this is equivalent

to the system

[
A
−I

]
x ≤ 0, cTx > 0 not having a solution. And finally, this last system is

equivalent to Ax ≤ 0, cTx > 0, x ≥ 0. Thus, either Ax ≤ 0, x ≥ 0, cTx > 0 has a solution,
or AT y ≥ c, y ≥ 0 has a solution, but not both.

2. (Soft thresholding)

(a) Let f : Rn → R be the Euclidean norm function f(x) = ‖x‖2. Prove that

∂f(x) =

{
{ ξ ∈ Rn | ‖ξ‖2 ≤ 1 } if x = 0
x

‖x‖2 if x 6= 0.

Solution. Let us begin with the case x̄ = 0. If a vector p satisfies ‖p‖ ≤ 1, then1

pTx ≤ ‖x‖
pTx− pT x̄+ ‖x̄‖ ≤ ‖x‖

pT (x− ‖x‖) + f(x̄) ≤ f(x)

So p ∈ ∂f(0). Now suppose that p ∈ ∂f(0) . Then

f(x) ≥ f(0) + pT (x− 0)

‖x‖ ≥ pTx

for all x ∈ Rn. Letting x = p
‖p‖ . Then ‖p‖ ≥ ‖p‖2 or ‖p‖ ≤ 1. Thus,

∂f(0) = {ξ ∈ Rn | ‖ξ‖ ≤ 1}

For the case x̄ 6= 0, if a vector p satisfies x
‖x‖ = p, then

x̄Tx ≤ ‖x̄‖‖x‖

‖x̄‖+
x̄Tx

‖x̄‖
− x̄T x̄

‖x̄‖
≤ ‖x‖

‖x̄‖+ pTx− pT x̄ ≤ ‖x‖
f(x̄) + pT (x− x̄) ≤ f(x)

1Sorry for the horrible formatting
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So p ∈ ∂f(x̄). On the other hand, suppose that p ∈ ∂f(x̄) for x̄ 6= 0. Then

‖x‖ ≥ ‖x̄‖+ pT (x− x̄)

for any x ∈ Rn. Letting x = 2x̄, x = p, x = 0, we obtain ‖p‖ ≤ 1, ‖p‖ ≥ 1, and
pTx = ‖x‖. Now note that2

‖x‖ = pTx

= ‖p‖‖x‖ cos(θ)

where θ is the angle between x and p. This implies that

1 ≤ cos(θ)

So cos(θ) = 1. That is, x and p are in the same direction, i.e. p = αx for some
α ∈ R. But we also know that ‖x‖ = pTx = αxTx = α‖x‖2. So α = 1

‖x‖ and thus

p = x
‖x‖ .

(b) Using the result of part (a), compute the optimal solution of

min
x∈Rn

1

2
‖x− y‖22 + λ‖x‖2,

where y ∈ Rn and λ > 0 are given data. (Fact: If f1, f2 are convex functions on Rn,
then for any x ∈ Rn, ∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x).)

Solution. Let f(x) = 1
2‖x − y‖

2
2 + λ‖x‖2. Assume that x 6= 0; then we have that

∇f(x) = (x − y) + λx
‖x‖ . In order for x 6= 0 to be an optimal solution, ∇f(x̄) = 0.

We can rearrange this to get that y = (1 + λ
‖x‖)x. That is, x is in the direction of y.

Furthermore, taking norm, we get that ‖y‖ = ‖x‖+ λ or ‖x‖ = ‖y‖ − λ if ‖y‖ ≥ λ.
Thus, when ‖y‖ ≥ λ, our optimal solution is

x =
y

‖y‖
(‖y‖ − λ) = y

(
1− λ

‖y‖

)
If λ > ‖y‖, then our assumption that x 6= 0 is false. Thus our optimal solution in
this case is x = 03.

3. Suppose that S is a closed and convex subset of Rn with nonempty interior. Let f : S → R
be differentiable on int(S). State if the following are true or false, justifying your answer.
(Theorems proved in class can be used directly.)

(a) If f is convex on S, then f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) for all x ∈ S and x̄ ∈ int(S).

Solution. Since S is a convex set, we know that
∫

(S) is also convex. By direct
result in class, this implies that f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) for all x ∈ int(S) and
x̄ ∈ int(S). All we need to do is show that this can be extended for points in the

2Collaborated with Blake Splitter for the geometric argument
3Sloppying handling of cases

2



Math 8110 (Spring 2019) Homework 2 Trevor Squires

boundary S \ intS. Let x be a point in the boundary of S. Then there exists a
sequence {xn} ⊂ int(S) such that {xn} converges to x. For each xn, we know that

f(xn) ≥ f(x̄) +∇f(x̄)T (xn − x̄)

Since f is differentiable on the interior, it is also continuous. Thus, taking the limit
as n→∞ on each side gives

f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄)

which is what we wanted to show.

(b) If f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄) for all x ∈ S and x̄ ∈ int(S), then f is convex on S.

Solution. This is not true in general. Consider a function f : [0, 1] × [0, 1] → R.
Let f(x, y) = 1 − x2 if y = 1 and f(x, y) = 0 otherwise. The function is clearly
non-convex over S (it is nonconvex over one edge of the boundary), but f(x) ≥
f(x̄) +∇f(x̄)T (x − x̄) for any x ∈ S, x̄ ∈ int(S) since the right hand side is always
zero and the left hand side is nonnegative.

4. Consider the function f : R3 → R , given by f(x) = xTAx, where

A =

2 2 3
1 3 1
1 2 θ

 .
What is the Hessian of f? For what values of θ is f strictly convex?

Solution. From the calculus review notes, we know that the Hessian of a quadratic form
with nonsymmetric matrix is H(f) = A+AT . Thus,

H(f) =

4 3 4
3 6 3
4 3 2θ


We will show conditions in which the Hessian is positive by computing all leading prin-
ciple minors. If all leading principle minors are positive, then we are good. We list the
determinants below (and noting the fact that 4 > 0)

• detH = 30θ − 60 =⇒ θ > 2

• M11 = 12θ − 9 =⇒ θ > 9
12

Thus, H is SPD, and f(x) is strictly convex, whenever θ > 2. 4

5. Prove that the geometric mean function

f : Rn+ → R+, f(x) =

(
n∏
i=1

xi

)1/n

is concave.
4Coincidentally, this is also the condition for H to be positive semidefinite
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Proof. For simplicity, let Π = (
∏n
i=1 xi)

1
n . We will prove that f is concave by showing its

Hessian is negative semidefinite. Observe that the partial of f with respect to xk is

∂f(x)

∂xk
=

1

n

(
Π

xk

)
And thus through rigorous computation we can obtain that

∂2f(x)

∂x2k
=
−(n− 1)Π

n2x2k

and
∂2f(x)

∂xkxl
=

Π

n2xkxl

Thus, setting yi = 1
xi

, we can write

zTHz =

(
n∑
i=1

yizi

)2

− n
n∑
i=1

y2i z
2
i

for any v ∈ Rn. To be negative semidefinite, we need this to be less than zero. This
follows from the convexity of x2 (it has strictly positive second derivative). By convexity,
we have that

f(
1

n
a1 + · · ·+ 1

n
an) ≤ 1

n
[f(a1) + . . . f(an)]

and so letting f(x) = x2 we get (
n∑
i=1

1

n
ai

)2

≥ 1

n

n∑
i=1

a2i

Rearrangement and letting ai = yizi gives the desired inequality. So H is negative semidef-
inite and f is concave.
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