1 Basic Definitions

1. Rewrite the following using mathematical notation.
(a) The function f has a root at $x=7$.
(b) The slope of f at $x=-1$ is 12 .
(c) Let $v(t)$ be the velocity of a volleyball at time t. The volleyball traveled 12 meters over the first 4 seconds.
(d) There exists a point c such that the area under the curve of f from 2 to c is positive.
(e) The function is increasing on the positive real numbers.
(f) The set of all real numbers not strictly between 4 and 5 .
(g) The function f is positive on the positive real numbers.
(h) The function f has slope 3 at some point c.
(i) The area under the curve of f over $(-1,4)$ is 12 .
(j) There exists a point c such that the function f evaluated at c is equal to 1 .
(k) Let $h(t)$ be the height of a volleyball at time t. The volleyball is decreasing by 25 feet per second.
2. Rewrite the following using only the English language.
(a) Solve $f(x)=2$.
(b) $f^{\prime}(0)=9$.
(c) $\frac{1}{b-a} \int_{a}^{b} f(x) d x=2$.
(d) $f(x)=4$ on $x \in\{-1,3,6\}$.
(e) $x=2 \Longrightarrow x^{2}=4$.
(f) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$.

2 Calculus knowledge

3. Explain the algebraic significance of the following statements about the graph of f.
(a) f has a local max at $x=2$.
(b) f has a cusp at $x=5$.
(c) f has a vertical asymptote at $x=3$.
(d) f is decreasing on $(-3,5)$.
4. Draw a valid graph of f from the previous problem.
5. Describe how to solve each of the problems using your own words.
(a) Find all points x such that the slope of f is 7 .
(b) Find the critical points of $f(x)=x^{4}-3 x^{2}+x+1$.
(c) $\max x^{3}+y$ subject to $x+y=6$.
(d) Approximate $\int_{-2}^{2} x^{3} d x$ using the midpoint Riemann sums with $n=4$ subintervals.
