1 Functions

1.1 High Level Review

For each of the following questions, give two answers: one for an algebraic definition of a function, e.g. $f(x) = \dots$, and another for a graphical definition of a function.

- 1. How can we determine if a relation is a valid function (well-defined)?
- 2. What does it mean for a function to be undefined?
- 3. What is the difference between the domain of a function and the range of a function? How can we find them?
- 4. What does "evaluate a function at a point" mean?
- 5. What is a root of function?
- 6. What does it mean for two functions to be inverses of each other?
- 7. When does a function have an inverse and when does it not?
- 8. How can we determine the intersection of two functions?
- 9. What is a secant line between two points and how can we find it?

1.2 Practice Questions

1. What point(s) is the function $f(x) = \frac{x^2-4}{x+2}$ undefined at if any?

2. Is
$$f(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x \le 0 \end{cases}$$
 a function?

- 3. Draw a graph of $f(x) = x^2$ and draw the secant line that intersects x = -2 and x = 2.
- 4. What is the domain of $f(x) = \log x$?
- 5. Find the inverse of the function $f(x) = x^3$ and plot the functions on the same graph.
- 6. Find the inverse of the function $f(x) = e^x$ and state the domain and range of each function.
- 7. For $f(x) = kx^2 6x + 9$, find the value of k such that f(x) has a root at x = 3.
- 8. How many real roots does $f(x) = x^2$ have? What about $g(x) = -x^2$?

2 Limits

2.1 High Level Review

For each of the following questions, give two answers: one for an algebraic definition of a function, e.g. $f(x) = \dots$, and another for a graphical definition of a function.

- 1. What is the difference between a left and right hand limit? How can we evaluate either of them?
- 2. When does a limit exist and when is it undefined?
- 3. Can a limit exist even if the function does not exist?
- 4. What does it mean for a function to be continuous at a point?
- 5. What does it mean for a function to be continuous over its domain?

2.2 Practice Questions

- 1. Draw a discontinuous function at x = 4.
- 2. Evaluate $\lim_{x\to 0^+} x^3$ and $\lim_{x\to 0^-} x^3$. Does $\lim_{x\to 0} x^3$ exist?
- 3. Is $f(x) = e^x$ continuous at $x = \ln 2$?
- 4. Where is $f(x) = \tan(x)$ not continuous in $[0, 2\pi]$?
- 5. Draw an example of a function that is defined to be 3 at x = 1, but $\lim_{x \to 1} f(x) = 2$. Is this function continuous at x = 1?

3 Derivatives

3.1 High Level Review

For each of the following questions, give two answers: one for an algebraic definition of a function, e.g. $f(x) = \dots$, and another for a graphical definition of a function.

- 1. When does a derivative of a function f(x) exist?
- 2. What does a derivative represent?
- 3. How are slope and a derivative related?
- 4. What is the difference between a secant line and a tangent line?
- 5. What is a cusp?

3.2 Practice Questions

- 1. Evaluate $\lim_{h \to 0} \frac{e^4(e^h 1)}{h}$.
- 2. Plot a graph of $f(x) = \sin(x)$ and determine all intervals in $[0, 2\pi]$ such that f(x) is decreasing.
- 3. Let $f(t) = 3t^2 20t$ represent my speed over a run. At what time t have I stopped moving?
- 4. Let $f(x) = -x^2 + 9$. Find the slope of the tangent line that intersects x = -3 and x = 3. Compare this to the slope of the tangent line at x = 0.
- 5. Where is f(x) = |x| not differentiable?